Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33452133

RESUMO

The harsh microenvironment of ductal carcinoma in situ (DCIS) exerts strong evolutionary selection pressures on cancer cells. We hypothesize that the poor metabolic conditions near the ductal center foment the emergence of a Warburg Effect (WE) phenotype, wherein cells rapidly ferment glucose to lactic acid, even in normoxia. To test this hypothesis, we subjected low-glycolytic breast cancer cells to different microenvironmental selection pressures using combinations of hypoxia, acidosis, low glucose, and starvation for many months and isolated single clones for metabolic and transcriptomic profiling. The two harshest conditions selected for constitutively expressed WE phenotypes. RNA sequencing analysis of WE clones identified the transcription factor KLF4 as potential inducer of the WE phenotype. In stained DCIS samples, KLF4 expression was enriched in the area with the harshest microenvironmental conditions. We simulated in vivo DCIS phenotypic evolution using a mathematical model calibrated from the in vitro results. The WE phenotype emerged in the poor metabolic conditions near the necrotic core. We propose that harsh microenvironments within DCIS select for a WE phenotype through constitutive transcriptional reprogramming, thus conferring a survival advantage and facilitating further growth and invasion.


Assuntos
Neoplasias da Mama/genética , Carcinoma Intraductal não Infiltrante/genética , Fatores de Transcrição Kruppel-Like/genética , Efeito Warburg em Oncologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma Intraductal não Infiltrante/metabolismo , Carcinoma Intraductal não Infiltrante/patologia , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Glicólise/genética , Humanos , Fator 4 Semelhante a Kruppel , Células MCF-7 , Estadiamento de Neoplasias , Hipóxia Tumoral/genética , Microambiente Tumoral/genética
3.
Nat Rev Genet ; 22(4): 251-262, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33257848

RESUMO

Intratumour heterogeneity and phenotypic plasticity, sustained by a range of somatic aberrations, as well as epigenetic and metabolic adaptations, are the principal mechanisms that enable cancers to resist treatment and survive under environmental stress. A comprehensive picture of the interplay between different somatic aberrations, from point mutations to whole-genome duplications, in tumour initiation and progression is lacking. We posit that different genomic aberrations generally exhibit a temporal order, shaped by a balance between the levels of mutations and selective pressures. Repeat instability emerges first, followed by larger aberrations, with compensatory effects leading to robust tumour fitness maintained throughout the tumour progression. A better understanding of the interplay between genetic aberrations, the microenvironment, and epigenetic and metabolic cellular states is essential for early detection and prevention of cancer as well as development of efficient therapeutic strategies.


Assuntos
Adaptação Fisiológica/genética , Epigênese Genética/genética , Neoplasias/genética , Microambiente Tumoral/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Mutação/genética , Neoplasias/patologia
4.
Proc Natl Acad Sci U S A ; 116(34): 16987-16996, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31387980

RESUMO

Repetitive sequences are hotspots of evolution at multiple levels. However, due to difficulties involved in their assembly and analysis, the role of repeats in tumor evolution is poorly understood. We developed a rigorous motif-based methodology to quantify variations in the repeat content, beyond microsatellites, in proteomes and genomes directly from proteomic and genomic raw data. This method was applied to a wide range of tumors and normal tissues. We identify high similarity between repeat instability patterns in tumors and their patient-matched adjacent normal tissues. Nonetheless, tumor-specific signatures both in protein expression and in the genome strongly correlate with cancer progression and robustly predict the tumorigenic state. In a patient, the hierarchy of genomic repeat instability signatures accurately reconstructs tumor evolution, with primary tumors differentiated from metastases. We observe an inverse relationship between repeat instability and point mutation load within and across patients independent of other somatic aberrations. Thus, repeat instability is a distinct, transient, and compensatory adaptive mechanism in tumor evolution and a potential signal for early detection.


Assuntos
Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica , Instabilidade Genômica , Modelos Biológicos , Proteínas de Neoplasias , Neoplasias , Humanos , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteômica
5.
Cancer Res ; 79(3): 518-533, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30573518

RESUMO

Downregulation of the urea cycle enzyme argininosuccinate synthase (ASS1) by either promoter methylation or by HIF1α is associated with increased metastasis and poor prognosis in multiple cancers. We have previously shown that in normoxic conditions, ASS1 downregulation facilitates cancer cell proliferation by increasing aspartate availability for pyrimidine synthesis by the enzyme complex CAD. Here we report that in hypoxia, ASS1 expression in cancerous cells is downregulated further by HIF1α-mediated induction of miR-224-5p, making the cells more invasive and dependent on upstream substrates of ASS1 for survival. ASS1 was downregulated under acidic conditions, and ASS1-depleted cancer cells maintained a higher intracellular pH (pHi), depended less on extracellular glutamine, and displayed higher glutathione levels. Depletion of substrates of urea cycle enzymes in ASS1-deficient cancers decreased cancer cell survival. Thus, ASS1 levels in cancer are differentially regulated in various environmental conditions to metabolically benefit cancer progression. Understanding these alterations may help uncover specific context-dependent cancer vulnerabilities that may be targeted for therapeutic purposes. SIGNIFICANCE: Cancer cells in an acidic or hypoxic environment downregulate the expression of the urea cycle enzyme ASS1, which provides them with a redox and pH advantage, resulting in better survival.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/3/518/F1.large.jpg.


Assuntos
Argininossuccinato Sintase/metabolismo , Neoplasias/metabolismo , Adolescente , Adulto , Animais , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Hipóxia Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Criança , Regulação para Baixo , Perfilação da Expressão Gênica , Glutamina/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Masculino , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Neoplasias/enzimologia , Neoplasias/patologia , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Oxirredução , Adulto Jovem
6.
Proc Natl Acad Sci U S A ; 115(47): E11101-E11110, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30404913

RESUMO

How mutation and selection determine the fitness landscape of tumors and hence clinical outcome is an open fundamental question in cancer biology, crucial for the assessment of therapeutic strategies and resistance to treatment. Here we explore the mutation-selection phase diagram of 6,721 tumors representing 23 cancer types by quantifying the overall somatic point mutation load (ML) and selection (dN/dS) in the entire proteome of each tumor. We show that ML strongly correlates with patient survival, revealing two opposing regimes around a critical point. In low-ML cancers, a high number of mutations indicates poor prognosis, whereas high-ML cancers show the opposite trend, presumably due to mutational meltdown. Although the majority of cancers evolve near neutrality, deviations are observed at extreme MLs. Melanoma, with the highest ML, evolves under purifying selection, whereas in low-ML cancers, signatures of positive selection are observed, demonstrating how selection affects tumor fitness. Moreover, different cancers occupy specific positions on the ML-dN/dS plane, revealing a diversity of evolutionary trajectories. These results support and expand the theory of tumor evolution and its nonlinear effects on survival.


Assuntos
Acúmulo de Mutações , Mutação/genética , Neoplasias/genética , Proteoma/genética , Seleção Genética/genética , Humanos , Modelos Genéticos , Neoplasias/mortalidade , Neoplasias/patologia , Resultado do Tratamento
7.
Nat Commun ; 9(1): 2997, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30065243

RESUMO

A reverse pH gradient is a hallmark of cancer metabolism, manifested by extracellular acidosis and intracellular alkalization. While consequences of extracellular acidosis are known, the roles of intracellular alkalization are incompletely understood. By reconstructing and integrating enzymatic pH-dependent activity profiles into cell-specific genome-scale metabolic models, we develop a computational methodology that explores how intracellular pH (pHi) can modulate metabolism. We show that in silico, alkaline pHi maximizes cancer cell proliferation coupled to increased glycolysis and adaptation to hypoxia (i.e., the Warburg effect), whereas acidic pHi disables these adaptations and compromises tumor cell growth. We then systematically identify metabolic targets (GAPDH and GPI) with predicted amplified anti-cancer effects at acidic pHi, forming a novel therapeutic strategy. Experimental testing of this strategy in breast cancer cells reveals that it is particularly effective against aggressive phenotypes. Hence, this study suggests essential roles of pHi in cancer metabolism and provides a conceptual and computational framework for exploring pHi roles in other biomedical domains.


Assuntos
Espaço Intracelular/metabolismo , Neoplasias/metabolismo , Neoplasias/terapia , Análise de Sistemas , Simulação por Computador , Glicólise , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Modelos Biológicos , Reprodutibilidade dos Testes
8.
Mol Cell Proteomics ; 14(3): 621-34, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25573745

RESUMO

Endothelial cells (ECs) play a key role to maintain the functionality of blood vessels. Altered EC permeability causes severe impairment in vessel stability and is a hallmark of pathologies such as cancer and thrombosis. Integrating label-free quantitative proteomics data into genome-wide metabolic modeling, we built up a model that predicts the metabolic fluxes in ECs when cultured on a tridimensional matrix and organize into a vascular-like network. We discovered how fatty acid oxidation increases when ECs are assembled into a fully formed network that can be disrupted by inhibiting CPT1A, the fatty acid oxidation rate-limiting enzyme. Acute CPT1A inhibition reduces cellular ATP levels and oxygen consumption, which are restored by replenishing the tricarboxylic acid cycle. Remarkably, global phosphoproteomic changes measured upon acute CPT1A inhibition pinpointed altered calcium signaling. Indeed, CPT1A inhibition increases intracellular calcium oscillations. Finally, inhibiting CPT1A induces hyperpermeability in vitro and leakage of blood vessel in vivo, which were restored blocking calcium influx or replenishing the tricarboxylic acid cycle. Fatty acid oxidation emerges as central regulator of endothelial functions and blood vessel stability and druggable pathway to control pathological vascular permeability.


Assuntos
Carnitina O-Palmitoiltransferase/antagonistas & inibidores , Células Endoteliais/metabolismo , Ácidos Graxos/metabolismo , Metaboloma , Modelos Biológicos , Proteômica/métodos , Trifosfato de Adenosina/metabolismo , Animais , Células Endoteliais/citologia , Compostos de Epóxi/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Técnicas In Vitro , Camundongos , Oxirredução , Consumo de Oxigênio , Permeabilidade
9.
BMC Genomics ; 13: 65, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22325056

RESUMO

BACKGROUND: Taxa counting is a major problem faced by analysis of metagenomic data. The most popular method relies on analysis of 16S rRNA sequences, but some studies employ also protein based analyses. It would be advantageous to have a method that is applicable directly to short sequences, of the kind extracted from samples in modern metagenomic research. This is achieved by the technique proposed here. RESULTS: We employ specific peptides, deduced from aminoacyl tRNA synthetases, as markers for the occurrence of single genes in data. Sequences carrying these markers are aligned and compared with each other to provide a lower limit for taxa counts in metagenomic data. The method is compared with 16S rRNA searches on a set of known genomes. The taxa counting problem is analyzed mathematically and a heuristic algorithm is proposed. When applied to genomic contigs of a recent human gut microbiome study, the taxa counting method provides information on numbers of different species and strains. We then apply our method to short read data and demonstrate how it can be calibrated to cope with errors. Comparison to known databases leads to estimates of the percentage of novelties, and the type of phyla involved. CONCLUSIONS: A major advantage of our method is its simplicity: it relies on searching sequences for the occurrence of just 4000 specific peptides belonging to the S61 subgroup of aaRS enzymes. When compared to other methods, it provides additional insight into the taxonomic contents of metagenomic data. Furthermore, it can be directly applied to short read data, avoiding the need for genomic contig reconstruction, and taking into account short reads that are otherwise discarded as singletons. Hence it is very suitable for a fast analysis of next generation sequencing data.


Assuntos
Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Metagenômica/métodos , Peptídeos/genética , Algoritmos , Sequência de Aminoácidos , Bactérias/classificação , Bactérias/genética , Genoma Bacteriano , Humanos , Intestinos/microbiologia , Metagenoma/genética , Dados de Sequência Molecular , Peptídeos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos
10.
BMC Bioinformatics ; 11: 390, 2010 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-20649951

RESUMO

BACKGROUND: We propose a method for deriving enzymatic signatures from short read metagenomic data of unknown species. The short read data are converted to six pseudo-peptide candidates. We search for occurrences of Specific Peptides (SPs) on the latter. SPs are peptides that are indicative of enzymatic function as defined by the Enzyme Commission (EC) nomenclature. The number of SP hits on an ensemble of short reads is counted and then converted to estimates of numbers of enzymatic genes associated with different EC categories in the studied metagenome. Relative amounts of different EC categories define the enzymatic spectrum, without the need to perform genomic assemblies of short reads. RESULTS: The method is developed and tested on 22 bacteria for which there exist many EC annotations in Uniprot. Enzymatic signatures are derived for 3 metagenomes, and their functional profiles are explored.We extend the SP methodology to taxon-specific SPs (TSPs), allowing us to estimate taxonomic features of metagenomic data from short reads. Using recent Swiss-Prot data we obtain TSPs for different phyla of bacteria, and different classes of proteobacteria. These allow us to analyze the major taxonomic content of 4 different metagenomic data-sets. CONCLUSIONS: The SP methodology can be successfully extended to applications on short read genomic and metagenomic data. This leads to direct derivation of enzymatic signatures from raw short reads. Furthermore, by employing TSPs, one obtains valuable taxonomic information.


Assuntos
Bactérias/classificação , Bactérias/genética , Metagenoma , Metagenômica/métodos , Bactérias/enzimologia , Proteínas de Bactérias/análise , Bases de Dados de Proteínas , Escherichia coli/enzimologia , Escherichia coli/genética , Genoma Bacteriano , Peptídeos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA