Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 365: 538-545, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30469033

RESUMO

The anionic surfactant sodium lauryl ether sulphate (SLES) is the main component in most foaming agents used for mechanized tunneling excavation. The process produces huge amounts of soil debris that can have a potential impact on ecosystems. The lack of accurate information about SLES persistence in excavated soil has aroused increasing concern about how it is recycled. The objective of this study was to assess SLES biodegradability in two commercial foaming agents (P1 and P2). Microcosm experiments were performed with two different soils collected from a tunnel construction site and conditioned with P1 or P2 (85.0 or 83.0 mg kg -1 of SLES, respectively). At selected times soil samples were collected for assessing the SLES residual concentration using Pressured Liquid Extraction followed by methylene blue active substance analysis (MBAS). Simultaneously, soil microbial abundance (DAPI counts), viability (Live/Dead method), activity (dehydrogenase analysis) and phylogenetic structure (Fluorescent In Situ Hybridization) were evaluated. SLES halved faster in the silty-clay soil (6 d) than in the gravel in a clay-silty-sand matrix (8-9 days). At day 28 it was degraded in both soils. Its biodegradation was ascribed to the significant increase in Gamma-Proteobacteria. At this time, the spoil material can be considered as a by-product.


Assuntos
Biodegradação Ambiental , Gammaproteobacteria/metabolismo , Dodecilsulfato de Sódio/metabolismo , Tensoativos/metabolismo , Éteres/química , Gammaproteobacteria/genética , Dodecilsulfato de Sódio/química , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA