Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38731628

RESUMO

Fluorescence lifetime imaging microscopy (FLIM) has proven to be a useful method for analyzing various aspects of material science and biology, like the supramolecular organization of (slightly) fluorescent compounds or the metabolic activity in non-labeled cells; in particular, FLIM phasor analysis (phasor-FLIM) has the potential for an intuitive representation of complex fluorescence decays and therefore of the analyzed properties. Here we present and make available tools to fully exploit this potential, in particular by coding via hue, saturation, and intensity the phasor positions and their weights both in the phasor plot and in the microscope image. We apply these tools to analyze FLIM data acquired via two-photon microscopy to visualize: (i) different phases of the drug pioglitazone (PGZ) in solutions and/or crystals, (ii) the position in the phasor plot of non-labelled poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs), and (iii) the effect of PGZ or PGZ-containing NPs on the metabolism of insulinoma (INS-1 E) model cells. PGZ is recognized for its efficacy in addressing insulin resistance and hyperglycemia in type 2 diabetes mellitus, and polymeric nanoparticles offer versatile platforms for drug delivery due to their biocompatibility and controlled release kinetics. This study lays the foundation for a better understanding via phasor-FLIM of the organization and effects of drugs, in particular, PGZ, within NPs, aiming at better control of encapsulation and pharmacokinetics, and potentially at novel anti-diabetics theragnostic nanotools.


Assuntos
Nanopartículas , Pioglitazona , Pioglitazona/farmacologia , Pioglitazona/química , Nanopartículas/química , Animais , Linhagem Celular Tumoral , Humanos , Microscopia de Fluorescência/métodos , Ratos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química
2.
ACS Appl Bio Mater ; 6(10): 4277-4289, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37699572

RESUMO

Onivyde was approved by the Food and Drug Administration (FDA) in 2015 for the treatment of solid tumors, including metastatic pancreatic cancer. It is designed to encapsulate irinotecan at high concentration, increase its blood-circulation lifetime, and deliver it to cells where it is enzymatically converted into SN-38, a metabolite with 100- to 1000-fold higher anticancer activity. Despite a rewarding clinical path, little is known about the physical state of encapsulated irinotecan within Onivyde and how this synthetic identity changes throughout the process from manufacturing to intracellular processing. Herein, we exploit irinotecan intrinsic fluorescence and fluorescence lifetime imaging microscopy (FLIM) to selectively probe the supramolecular organization of the drug. FLIM analysis on the manufacturer's formulation reveals the presence of two coexisting physical states within Onivyde liposomes: (i) gelated/precipitated irinotecan and (ii) liposome-membrane-associated irinotecan, the presence of which is not inferable from the manufacturer's indications. FLIM in combination with high-performance liquid chromatography (HPLC) and a membrane-impermeable dynamic quencher of irinotecan reveals rapid (within minutes) and complete chemical dissolution of the gelated/precipitated phase upon Onivyde dilution in standard cell-culturing medium with extensive leakage of the prodrug from liposomes. Indeed, confocal imaging and cell-proliferation assays show that encapsulated and nonencapsulated irinotecan formulations are similar in terms of cell-uptake mechanism and cell-division inhibition. Finally, 2-channel FLIM analysis discriminates the signature of irinotecan from that of its red-shifted SN-38 metabolite, demonstrating the appearance of the latter as a result of Onivyde intracellular processing. The findings presented in this study offer fresh insights into the synthetic identity of Onivyde and its transformation from production to in vitro administration. Moreover, these results serve as another validation of the effectiveness of FLIM analysis in elucidating the supramolecular organization of encapsulated fluorescent drugs. This research underscores the importance of leveraging advanced imaging techniques to deepen our understanding of drug formulations and optimize their performance in delivery applications.


Assuntos
Lipossomos , Neoplasias Pancreáticas , Estados Unidos , Humanos , Irinotecano/química , Irinotecano/uso terapêutico , Lipossomos/química , Fluorescência , Neoplasias Pancreáticas/tratamento farmacológico
3.
Sci Rep ; 13(1): 13342, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587148

RESUMO

Pro-inflammatory cytokines contribute to ß-cell failure in both Type-1 and Type-2 Diabetes. Data collected so far allowed to dissect the genomic, transcriptomic, proteomic and biochemical landscape underlying cytokine-induced ß-cell progression through dysfunction. Yet, no report thus far complemented such molecular information with the direct optical nanoscopy of the ß-cell subcellular environment. Here we tackle this issue in Insulinoma 1E (INS-1E) ß-cells by label-free fluorescence lifetime imaging microscopy (FLIM) and fluorescence-based super resolution imaging by expansion microscopy (ExM). It is found that 24-h exposure to IL-1ß and IFN-γ is associated with a neat modification of the FLIM signature of cell autofluorescence due to the increase of either enzyme-bound NAD(P)H molecules and of oxidized lipid species. At the same time, ExM-based direct imaging unveils neat alteration of mitochondrial morphology (i.e. ~ 80% increase of mitochondrial circularity), marked degranulation (i.e. ~ 40% loss of insulin granules, with mis-localization of the surviving pool), appearance of F-actin-positive membrane blebs and an hitherto unknown extensive fragmentation of the microtubules network (e.g. ~ 37% reduction in the number of branches). Reported observations provide an optical-microscopy framework to interpret the amount of molecular information collected so far on ß-cell dysfunction and pave the way to future ex-vivo and in-vivo investigations.


Assuntos
Neoplasias Pancreáticas , Proteômica , Humanos , Citoesqueleto de Actina , Citocinas , Microscopia de Fluorescência
4.
ACS Appl Mater Interfaces ; 14(51): 56666-56677, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36524967

RESUMO

Lipid nanoparticles (LNPs) are currently having an increasing impact on nanomedicines as delivery agents, among others, of RNA molecules (e.g., short interfering RNA for the treatment of hereditary diseases or messenger RNA for the development of COVID-19 vaccines). Despite this, the delivery of plasmid DNA (pDNA) by LNPs in preclinical studies is still unsatisfactory, mainly due to the lack of systematic structural and functional studies on DNA-loaded LNPs. To tackle this issue, we developed, characterized, and tested a library of 16 multicomponent DNA-loaded LNPs which were prepared by microfluidics and differed in lipid composition, surface functionalization, and manufacturing factors. 8 out of 16 formulations exhibited proper size and zeta potential and passed to the validation step, that is, the simultaneous quantification of transfection efficiency and cell viability in human embryonic kidney cells (HEK-293). The most efficient formulation (LNP15) was then successfully validated both in vitro, in an immortalized adult keratinocyte cell line (HaCaT) and in an epidermoid cervical cancer cell line (CaSki), and in vivo as a nanocarrier to deliver a cancer vaccine against the benchmark target tyrosine-kinase receptor HER2 in C57BL/6 mice. Finally, by a combination of confocal microscopy, transmission electron microscopy and synchrotron small-angle X-ray scattering, we were able to show that the superior efficiency of LNP15 can be linked to its disordered nanostructure consisting of small-size unoriented layers of pDNA sandwiched between closely apposed lipid membranes that undergo massive destabilization upon interaction with cellular lipids. Our results provide new insights into the structure-activity relationship of pDNA-loaded LNPs and pave the way to the clinical translation of this gene delivery technology.


Assuntos
COVID-19 , Nanopartículas , Animais , Camundongos , Humanos , Vacinas contra COVID-19 , Células HEK293 , Lipídeos/química , Camundongos Endogâmicos C57BL , DNA/química , Nanopartículas/química , RNA Interferente Pequeno
5.
Biophys Chem ; 253: 106228, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31349136

RESUMO

The spectral and the photophysical properties of phthalocyanines have made these dyes attractive for applications in photodynamic therapy of cancer. One important known issue of these compounds is their tendency to aggregate in aqueous media, which decreases their fluorescence, triplet, and singlet oxygen quantum yields. We report on the use of apomyoglobin as a carrier for zinc phthalocyanine (ZnPc) to overcome solubility limitations of the dye. We show that the protein is able to bind ZnPc in monomeric form, preserving its photophysics. Confocal fluorescence imaging of PC3 and HeLa cells, treated with the complex between ZnPc and apomyoglobin, demonstrates that the photosensitizer is uptaken quickly by cells. Illumination of treated cells strongly decreases viability, as demonstrated by live/dead fluorescence assay.


Assuntos
Apoproteínas/química , Indóis/farmacologia , Mioglobina/química , Neoplasias/tratamento farmacológico , Compostos Organometálicos/farmacologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Indóis/química , Isoindóis , Neoplasias/patologia , Imagem Óptica , Compostos Organometálicos/química , Células PC-3 , Tamanho da Partícula , Fármacos Fotossensibilizantes/química , Propriedades de Superfície , Células Tumorais Cultivadas , Compostos de Zinco
6.
Biomacromolecules ; 20(5): 2024-2033, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-30995399

RESUMO

Bioavailability of photosensitizers for cancer photodynamic therapy is often hampered by their low solubility in water. Here, we overcome this issue by using the water-soluble protein apomyoglobin (apoMb) as a carrier for the photosensitizer hypericin (Hyp). The Hyp-apoMb complex is quickly uptaken by HeLa and PC3 cells at submicromolar concentrations. Fluorescence emission of Hyp-apoMb is exploited to localize the cellular distribution of the photosensitizer. The plasma membrane is rapidly and efficiently loaded, and fluorescence is observed in the cytoplasm only at later times and to a lesser extent. Comparison with cells loaded with Hyp alone demonstrates that the uptake of the photosensitizer without the protein carrier is a slower, less efficient process, that involves the whole cell structure without preferential accumulation at the plasma membrane. Cell viability assays demonstrate that the Hyp-apoMb exhibits superior performance over Hyp. Similar results were obtained using tumor spheroids as three-dimensional cell culture models.


Assuntos
Antineoplásicos/administração & dosagem , Apoproteínas/química , Portadores de Fármacos/química , Mioglobina/química , Perileno/análogos & derivados , Fármacos Fotossensibilizantes/administração & dosagem , Antracenos , Antineoplásicos/química , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células HeLa , Humanos , Perileno/administração & dosagem , Perileno/química , Perileno/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Esferoides Celulares/efeitos dos fármacos
7.
J Phys Chem B ; 121(47): 10648-10656, 2017 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-29086562

RESUMO

The NEET proteins are a novel family of iron-sulfur proteins characterized by an unusual three cysteine and one histidine coordinated [2Fe-2S] cluster. Aberrant cluster release, facilitated by the breakage of the Fe-N bond, is implicated in a variety of human diseases, including cancer. Here, the molecular dynamics in the multi-microsecond timescale, along with quantum chemical calculations, on two representative members of the family (the human NAF-1 and mitoNEET proteins), show that the loss of the cluster is associated with a dramatic decrease in secondary and tertiary structure. In addition, the calculations provide a mechanism for cluster release and clarify, for the first time, crucial differences existing between the two proteins, which are reflected in the experimentally observed difference in the pH-dependent cluster reactivity. The reliability of our conclusions is established by an extensive comparison with the NMR data of the solution proteins, in part measured in this work.


Assuntos
Proteínas Mitocondriais/química , Simulação de Dinâmica Molecular , Ribonucleoproteínas/química , Humanos , Conformação Proteica , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA