Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Front Public Health ; 12: 1385387, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799687

RESUMO

Background: Nanoplastics, an emerging form of pollution, are easily consumed by organisms and pose a significant threat to biological functions due to their size, expansive surface area, and potent ability to penetrate biological systems. Recent findings indicate an increasing presence of airborne nanoplastics in atmospheric samples, such as polystyrene (PS), raising concerns about potential risks to the human respiratory system. Methods: This study investigates the impact of 800 nm diameter-PS nanoparticles (PS-NPs) on A549, a human lung adenocarcinoma cell line, examining cell viability, redox balance, senescence, apoptosis, and internalization. We also analyzed the expression of hallmark genes of these processes. Results: We demonstrated that PS-NPs of 800 nm in diameter significantly affected cell viability, inducing oxidative stress, cellular senescence, and apoptosis. PS-NPs also penetrated the cytoplasm of A549 cells. These nanoparticles triggered the transcription of genes comprised in the antioxidant network [SOD1 (protein name: superoxide dismutase 1, soluble), SOD2 (protein name: superoxide dismutase 2, mitochondrial), CAT (protein name: catalase), Gpx1 (protein name: glutathione peroxidase 1), and HMOX1 (protein name: heme oxygenase 1)], senescence-associated secretory phenotype [Cdkn1a (protein name: cyclin-dependent kinase inhibitor 1A), IL1A (protein name: interleukin 1 alpha), IL1B (protein name: interleukin 1 beta), IL6 (protein name: interleukin 6), and CXCL8 (protein name: C-X-C motif chemokine ligand 8)], and others involved in the apoptosis modulation [BAX (protein name: Bcl2 associated X, apoptosis regulator), CASP3 (protein name: caspase 3), and BCL2 (protein name: Bcl2, apoptosis regulator)]. Conclusion: Collectively, this investigation underscores the importance of concentration (dose-dependent effect) and exposure duration as pivotal factors in assessing the toxic effects of PS-NPs on alveolar epithelial cells. Greater attention needs to be directed toward comprehending the risks of cancer development associated with air pollution and the ensuing environmental toxicological impacts on humans and other terrestrial mammals.


Assuntos
Células Epiteliais Alveolares , Apoptose , Senescência Celular , Nanopartículas , Estresse Oxidativo , Poliestirenos , Humanos , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Poliestirenos/toxicidade , Senescência Celular/efeitos dos fármacos , Células A549 , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Microplásticos/toxicidade
2.
Antioxidants (Basel) ; 11(11)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36358459

RESUMO

'Sulmona red garlic' is an Italian variety characterized by a red tunica surrounding a white bulb. Red tunicae and non-commercial small bulbs are food wastes that must be studied for their added value. Hydroalcoholic extracts, obtained by separated inner and outer tunicae and peeled bulbs of small commercial 'Sulmona red garlic' bulbs, harvested at two different years, were first characterized with respect to their color, polyphenolic content, and antiradical activity. Then, an untargeted metabolic profile by means of electrospray ionization Fourier transform ion cyclotron resonance (ESI FT-ICR) mass spectrometry led to a comparative evaluation of the chemical diversity of six different samples. The study was completed by biological tests aiming to evaluate the associated health potential. Data on monocytes/macrophages showed good biocompatibility and a promising cytoprotective effect under oxidative stress conditions of all the extracts. At a molecular level, all the garlic extracts were able to downregulate the hydrogen peroxide-induced cyclooxygenase-2 and inducible nitric oxide synthase expression through the modulation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ĸB) and peroxynitrite intracellular amounts, at different extents depending on the extract, the cell type, and the concentration. On the whole, data highlight an associated health potential of the extracts of this waste plant material both in terms of cytoprotection and of anti-inflammatory activity.

3.
Front Physiol ; 13: 917956, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091366

RESUMO

Fibromyalgia (FM) syndrome is characterized by the close correlation of chronic widespread pain and other non-pain related symptoms. Aim of this study was to investigate whether telerehabilitation that provides physical and psychological support services of the mind-body techniques can affect the clinical profile and pain relief of FM patients. The study included twenty-eight female FM patients, mean aged 56.61 ± 8.56 years. All patients underwent a rehabilitation treatment (8 sessions, 1/week, 1 h/each) through Zoom platform, with the following principles of rehabilitation treatment: Anchoring to a positive emotion; listen and perceive your "own" body; conscious breathing; improve interoceptive awareness; relax. All patients then underwent clinical assessment of the physical distress and fear of movement for the Numeric Rating Scale (NRS); the Fatigue Assessment Scale (FAS); the Fear Avoidance Belief Questionnaire (FABQ); with measures of physical and mental disability for the Fibromyalgia Impact Questionnaire (FIQ); the 12-Items Short Form Survey; the Resilience Scale for Adults and the Coping Strategies Questionnaire-Revised. The evaluations were performed at T0 (baseline), T1 (after 8 weeks of treatment), and T2 (after 1 month of follow-up). The main finding was that telerehabilitation reduced physical and mental distress, fear, and disability (p < 0.001). Resilience and coping ability were less affected by the rehabilitative treatment. Our attempt of mind-body technique telerehabilitation has shown good results in the improvement of painful symptoms and quality of life for the FM patients but showed fewer positive impacts for the resilience and coping abilities aspects.

4.
Molecules ; 27(3)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35164003

RESUMO

Like other organs, brain functions diminish with age. Furthermore, for a variety of neurological disorders-including Alzheimer's disease-age is one of the higher-risk factors. Since in many Western countries the average age is increasing, determining approaches for decreasing the effects of aging on brain function is taking on a new urgency. Neuroinflammation and oxidative stress are two convoluted key factors in brain aging and chronic neurodegenerative diseases. The diverseness of factors, causing an age-related decrease in brain functions, requires identifying small molecules that have multiple biological activities that can affect all these factors. One great source of these small molecules is related to polyphenolic flavonoids. Recently, 3,3',4',7-tetrahydroxyflavone (fisetin) has been reported as a potent senotherapeutic capable of extending lifespan by reducing peroxidation levels and enhancing antioxidant cell responses. The neuroprotective effects of fisetin have been shown in several in vitro and in vivo models of neurological disorders due to its actions on multiple pathways associated with different neurological disorders. The present work aims to collect the most recent achievements related to the antioxidant and neuroprotective effects of fisetin. Moreover, in silico pharmacokinetics, pharmacodynamics, and toxicity of fisetin are also comprehensively described along with emerging novel drug delivery strategies for the amelioration of this flavonol bioavailability and chemical stability.


Assuntos
Antioxidantes/farmacologia , Senescência Celular , Flavonóis/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais , Humanos , Doenças do Sistema Nervoso
5.
Int J Mol Sci ; 22(2)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467663

RESUMO

Neonatal hypoxic-ischemic (HI) brain injury is one of the major drawbacks of mortality and causes significant short/long-term neurological dysfunction in newborn infants worldwide. To date, due to multifunctional complex mechanisms of brain injury, there is no well-established effective strategy to completely provide neuroprotection. Although therapeutic hypothermia is the proven treatment for hypoxic-ischemic encephalopathy (HIE), it does not completely chang outcomes in severe forms of HIE. Therefore, there is a critical need for reviewing the effective therapeutic strategies to explore the protective agents and methods. In recent years, it is widely believed that there are neuroprotective possibilities of natural compounds extracted from plants against HIE. These natural agents with the anti-inflammatory, anti-oxidative, anti-apoptotic, and neurofunctional regulatory properties exhibit preventive or therapeutic effects against experimental neonatal HI brain damage. In this study, it was aimed to review the literature in scientific databases that investigate the neuroprotective effects of plant extracts/plant-derived compounds in experimental animal models of neonatal HI brain damage and their possible underlying molecular mechanisms of action.


Assuntos
Hipotermia Induzida/métodos , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Extratos Vegetais/uso terapêutico , Animais , Animais Recém-Nascidos , Apoptose , Produtos Biológicos/uso terapêutico , Encefalopatias/metabolismo , Lesões Encefálicas/tratamento farmacológico , Citocinas/metabolismo , Modelos Animais de Doenças , Radicais Livres , Humanos , Inflamação , Camundongos , Neurônios/metabolismo , Estresse Oxidativo , Polifenóis/química , Ratos , Suínos
6.
Int J Mol Sci ; 21(19)2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33023074

RESUMO

Extremely low frequency electromagnetic fields (ELF-EMFs) have been known to modulate inflammatory responses by targeting signal transduction pathways and influencing cellular redox balance through the generation of oxidants and antioxidants. Here, we studied the molecular mechanism underlying the anti-oxidative effect of ELF-EMF in THP-1 cells, particularly with respect to antioxidant enzymes, such as heme oxygenase-1 (HO-1), regulated transcriptionally through nuclear factor E2-related factor 2 (Nrf2) activation. Cells treated with lipopolysaccharides (LPS) were exposed to a 50 Hz, 1 mT extremely low frequency electromagnetic fields for 1 h, 6 h and, 24 h. Our results indicate that ELF-EMF induced HO-1 mRNA and protein expression in LPS-treated THP-1 cells, with peak expression at 6 h, accompanied with a concomitant migration to the nucleus of a truncated HO-1 protein form. The immunostaining analysis further verified a nuclear enrichment of HO-1. Moreover, ELF-EMF inhibited the protein expressions of the sirtuin1 (SIRT1) and nuclear factor kappa B (NF-kB) pathways, confirming their anti-inflammatory/antioxidative role. Pretreatment with LY294002 (Akt inhibitor) and PD980559 (ERK inhibitor) inhibited LPS-induced Nrf2 nuclear translocation and HO-1 protein expression in ELF-EMF-exposed cells. Taken together, our results suggest that short ELF-EMF exposure exerts a protective role in THP-1 cells treated with an inflammatory/oxidative insult such as LPS, via the regulation of Nrf-2/HO-1 and SIRT1 /NF-kB pathways associated with intracellular glutathione (GSH) accumulation.


Assuntos
Campos Eletromagnéticos , Heme Oxigenase-1/genética , Inflamação/terapia , Fator 2 Relacionado a NF-E2/genética , Sirtuína 1/genética , Linhagem Celular , Movimento Celular/efeitos da radiação , Cromonas/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Regulação da Expressão Gênica/efeitos da radiação , Glutationa/genética , Glutationa/metabolismo , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Morfolinas/farmacologia , Compostos Orgânicos/farmacologia , Estresse Oxidativo/efeitos da radiação , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais/efeitos da radiação
7.
Antioxidants (Basel) ; 9(6)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32492880

RESUMO

Matrix metalloproteinases (MMPs) play a crucial role in tumor angiogenesis, and metastasis. 4'-geranyloxyferulic acid (GOFA) has anti-tumor and anti-inflammatory proprieties. Herein, we aimed to determine whether this compound affects cell survival, invasion, and migration through reactive oxygen species (ROS)-mediated MMPs activation of extracellular signal-regulated kinases (ERKs) and p38 signaling in lymphocytic histiocytoma (U937) and colorectal cancer (HCT116) cells. We observed that lipopolysaccharide (LPS) stimulated U937 and HCT116 cells presented abnormal cell proliferation and increased metalloproteinase (MMP-9) activity and expression. Non-cytotoxic doses of GOFA blunted matrix invasive potential by reducing LPS-induced MMP-9 expression and cell migration via inhibiting ROS/ ERK pathway. GOFA also attenuated apoptosis and cell senescence. Our findings indicate that GOFA, inhibiting cancer cell proliferation and migration, could be therapeutically beneficial to prevent tumor metastasis.

8.
Antioxidants (Basel) ; 8(8)2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31430883

RESUMO

The L-3,4-dihydroxyphenylalanine (LD) is the gold standard drug currently used to manage Parkinson's disease (PD) and to control its symptoms. However, LD could cause disease neurotoxicity due to the generation of pro-oxidant intermediates deriving from its autoxidation. In order to overcome this limitation, we have conjugated LD to the natural antioxidant glutathione (GSH) to form a codrug (GSH-LD). Here we investigated the effect of GSH-LD on H2O2-induced cellular toxicity in undifferentiated and differentiated lymphoma U-937 and dopaminergic neuroblastoma SH-SY5Y cell lines, used respectively as models to study the involvement of macrophages/microglia and dopaminergic neurons in PD. We analyzed the effect of GSH-LD on apoptosis and cellular oxidative stress, both considered strategic targets for the prevention and treatment of neurodegenerative diseases. Compared to LD and GSH, GSH-LD had a stronger effect in preventing hydrogen peroxide (H2O2) induced apoptosis in both cell lines. Moreover, GSH-LD was able to preserve cell viability, cellular redox status, gluthation metabolism and prevent reactive oxygen species (ROS) formation, in a phosphinositide 3-kinase (PI3K)/kinase B (Akt)-dependent manner, in a neurotoxicity cellular model. Our findings indicate that the GSH-LD codrug offers advantages deriving from the additive effect of LD and GSH and it could represent a promising candidate for PD treatment.

9.
Int J Mol Sci ; 20(13)2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31269760

RESUMO

Chenopodium quinoa Wild is a "pseudocereal" grain which attracts a lot of attention in the scientific community as it has a positive effect on health. Here, we investigate the presence of biologically active O-prenylated phenylpropanoids in the ethanol extract of commercially available quinoa seeds. We claim that 4'-Geranyloxyferulic acid (GOFA) was the only phytochemical product found that belongs to quinoa's group secondary metabolites. We studied the changes in the oxidative and inflammatory status of the cellular environment in HCT 116 cell line processed with quinoa extract and its component GOFA; the implementation was done through the analysis of the antioxidant enzymes (SOD and CAT), the pro-inflammatory components (iNOS, IL-6 and TNF-α), and the products of intermediary metabolism (ONOO-, O2-). Moreover, the l-arginine uptake was proposed as a target of the tested compounds. We demonstrated that the GOFA, through a decrease of the CAT-2B expression, leads to a reduction of the l-arginine uptake, downregulating the harmful iNOS and restoring the altered redox state. These results propose a new molecular target involved in the reduction of the critical inflammatory process responsible for the cancer progression.


Assuntos
Anticarcinógenos/farmacologia , Arginina/metabolismo , Transportador 2 de Aminoácidos Catiônicos/metabolismo , Ácidos Cumáricos/farmacologia , Óxido Nítrico/metabolismo , Anticarcinógenos/química , Chenopodium quinoa/química , Ácidos Cumáricos/química , Células HCT116 , Humanos , Inflamação/metabolismo , Inflamação/prevenção & controle , Neoplasias/metabolismo , Neoplasias/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Sementes/química
10.
Int J Mol Sci ; 18(4)2017 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-28333102

RESUMO

Polyphenols compounds are a group molecules present in many plants. They have antioxidant properties and can also be helpful in the management of sepsis. Licochalcone C (LicoC), a constituent of Glycyrrhiza glabra, has various biological and pharmacological properties. In saying this, the effect of LicoC on the inflammatory response that characterizes septic myocardial dysfunction is poorly understood. The aim of this study was to determine whether LicoC exhibits anti-inflammatory properties on H9c2 cells that are stimulated with lipopolysaccharide. Our results have shown that LicoC treatment represses nuclear factor-κB (NF-κB) translocation and several downstream molecules, such as inducible nitric oxide synthase (iNOS), intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). Moreover, LicoC has upregulated the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/endothelial nitric oxide synthase (eNOS) signaling pathway. Finally, 2-(4-Morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride (LY294002), a specific PI3K inhibitor, blocked the protective effects of LicoC. These findings indicate that LicoC plays a pivotal role in cardiac dysfunction in sepsis-induced inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Chalconas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular , Molécula 1 de Adesão Intercelular/metabolismo , Lipopolissacarídeos/toxicidade , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos
11.
Front Biosci (Landmark Ed) ; 22(5): 757-771, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27814644

RESUMO

It has been shown that functional recovery of patients with acute congestive heart failure (ACHF) after treatment with conventional drugs (CD) is mediated by suppression of inflammation in peripheral blood mononuclear cells. Here, we analyzed gene expression profiles of monocytes from symptomatic ACHF patients (NYHA Class III-IV) before and after pharmacological treatment with CD. The treatment was associated with selective down-regulation of "TNFR signaling" and pro-inflammatory mediators CCL5, MIP-1α receptor, CD14, ITGAM, and significant up-regulation of "TNFR signaling" as evidenced by increase in anti-inflammatory factors including NF-kBIA, TNFAIP3 and SHP-1. In monocyte TNF-alpha-stimulated there is a down-regulation of the phosphatase SHP-1 which induces a significant activation of TAK-1/IKK/NF-kB signaling. These findings suggest that the therapeutic impact of CD treatment in symptomatic ACHF includes negative regulation of the NF-kB signaling in monocytes and the improvement of the SHP-1 activity.


Assuntos
Insuficiência Cardíaca/sangue , Monócitos/metabolismo , NF-kappa B/sangue , Proteína Tirosina Fosfatase não Receptora Tipo 6/sangue , Idoso , Estudos de Casos e Controles , Feminino , Insuficiência Cardíaca/genética , Humanos , Quinase I-kappa B/sangue , Linfócitos/metabolismo , MAP Quinase Quinase Quinases/sangue , Masculino , Pessoa de Meia-Idade , Neutrófilos/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , RNA Interferente Pequeno/genética , Transdução de Sinais , Transcriptoma , Fator de Necrose Tumoral alfa/sangue
12.
Int J Mol Sci ; 17(9)2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27598129

RESUMO

It is known that increased levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) can exert harmful effects, altering the cellular redox state. Electrolyzed Reduced Water (ERW) produced near the cathode during water electrolysis exhibits high pH, high concentration of dissolved hydrogen and an extremely negative redox potential. Several findings indicate that ERW had the ability of a scavenger free radical, which results from hydrogen molecules with a high reducing ability and may participate in the redox regulation of cellular function. We investigated the effect of ERW on H2O2-induced U937 damage by evaluating the modulation of redox cellular state. Western blotting and spectrophotometrical analysis showed that ERW inhibited oxidative stress by restoring the antioxidant capacity of superoxide dismutase, catalase and glutathione peroxidase. Consequently, ERW restores the ability of the glutathione reductase to supply the cell of an important endogenous antioxidant, such as GSH, reversing the inhibitory effect of H2O2 on redox balance of U937 cells. Therefore, this means a reduction of cytotoxicity induced by peroxynitrite via a downregulation of the NF-κB/iNOS pathway and could be used as an antioxidant for preventive and therapeutic application. In conclusion, ERW can protect the cellular redox balance, reducing the risk of several diseases with altered cellular homeostasis such as inflammation.


Assuntos
Antioxidantes/farmacologia , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Água/farmacologia , Antioxidantes/química , Linhagem Celular Tumoral , Eletrólise/métodos , Humanos , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Pesquisa Translacional Biomédica/métodos , Água/química
13.
J Cell Physiol ; 231(11): 2439-51, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26895796

RESUMO

Several studies have shown that xanthones obtained from Garcinia Mangostana (GM) have remarkable biological activities. α-mangostin (α-MG) is the main constituent of the fruit hull of the GM. Several findings have suggested that SIRT-1, a nuclear histone deacetylase, could influence cellular function by the inhibition of NF-kB signaling. ROS can inhibit SIRT-1 activity by initiating oxidative modifications on its cysteine residues, and suppression of SIRT-1 enhances the NF-κB signaling resulting in inflammatory responses. The goals of the present study were to evaluate the quantity of α-MG in the methanolic extract of GM (Vithagroup Spa) and to investigate the activity of this xanthone in U937 cell line and in human monocytes from responsive to inflammatory insult analyzing the possible changes on the activation of SIRT-1 protein via NF-Kb. Cells were treated with the methanolic extract of GM and/or LPS. The chromatographic separation of α-MG was performed by an HPLC analysis. EX 527, a specific SIRT-1 inhibitor, was used to determine if SIRT-1/NfkB signaling pathway might be involved in α-MG action on cells. Our results show that α-MG inhibits p65 acetylation and down-regulates the pro-inflammatory gene products as COX-2, iNOS via SIRT-1 activation. Cells treated with EX 527 showed an up-regulation of NFkB acetylation and an over expression of inducible enzymes and their product of catalysis (NO and PGE2). These results suggest that α-MG may be useful for the development of alternative pharmacological strategies aimed at reducing the inflammatory process. J. Cell. Physiol. 231: 2439-2451, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Inflamação/patologia , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/metabolismo , Xantonas/farmacologia , Acetilação/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Citocinas/genética , Citocinas/metabolismo , Citoproteção/efeitos dos fármacos , Sequestradores de Radicais Livres/farmacologia , Garcinia/química , Humanos , Lipopolissacarídeos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Superóxidos/metabolismo , Células U937 , Xantonas/química
14.
PLoS One ; 10(10): e0139644, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26431550

RESUMO

Several reports suggest that ELF-EMF exposures interact with biological processes including promotion of cell proliferation. However, the molecular mechanisms by which ELF-EMF controls cell growth are not completely understood. The present study aimed to investigate the effect of ELF-EMF on keratinocytes proliferation and molecular mechanisms involved. Effect of ELF-EMF (50 Hz, 1 mT) on HaCaT cell cycle and cells growth and viability was monitored by FACS analysis and BrdU assay. Gene expression profile by microarray and qRT-PCR validation was performed in HaCaT cells exposed or not to ELF-EMF. mTOR, Akt and MAPKs expressions were evaluated by Western blot analysis. In HaCaT cells, short ELF-EMF exposure modulates distinct patterns of gene expression involved in cell proliferation and in the cell cycle. mTOR activation resulted the main molecular target of ELF-EMF on HaCaT cells. Our data showed the increase of the canonical pathway of mTOR regulation (PI3K/Akt) and activation of ERK signaling pathways. Our results indicate that ELF-EMF selectively modulated the expression of multiple genes related to pivotal biological processes and functions that play a key role in physio-pathological mechanisms such as wound healing.


Assuntos
Queratinócitos/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Técnicas de Cultura de Células , Proliferação de Células/genética , Campos Eletromagnéticos , Humanos , Masculino , Pessoa de Meia-Idade , Família Multigênica/genética , Transcriptoma/genética , Cicatrização/genética
15.
J Cell Mol Med ; 19(7): 1548-56, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25807993

RESUMO

Polyphenols are the major components of many traditional herbal remedies, which exhibit several beneficial effects including anti-inflammation and antioxidant properties. Src homology region 2 domain-containing phosphatase-1 (SHP-1) is a redox sensitive protein tyrosine phosphatase that negatively influences downstream signalling molecules, such as mitogen-activated protein kinases, thereby inhibiting inflammatory signalling induced by lipopolysaccharide (LPS). Because a role of transforming growth factor ß-activated kinase-1 (TAK1) in the upstream regulation of JNK molecule has been well demonstrated, we conjectured that SHP-1 could mediate the anti-inflammatory effect of verbascoside through the regulation of TAK-1/JNK/AP-1 signalling in the U937 cell line. Our results demonstrate that verbascoside increased the phosphorylation of SHP-1, by attenuating the activation of TAK-1/JNK/AP-1 signalling. This leads to a reduction in the expression and activity of both COX and NOS. Moreover, SHP-1 depletion deletes verbascoside inhibitory effects on pro-inflammatory molecules induced by LPS. Our data confirm that SHP-1 plays a critical role in restoring the physiological mechanisms of inducible proteins such as COX2 and iNOS, and that the down-regulation of TAK-1/JNK/AP-1 signalling by targeting SHP-1 should be considered as a new therapeutic strategy for the treatment of inflammatory diseases.


Assuntos
Regulação para Baixo/efeitos dos fármacos , Glucosídeos/farmacologia , Inflamação/enzimologia , Inflamação/patologia , Fenóis/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Morte Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Ciclo-Oxigenase 2/metabolismo , Ativação Enzimática/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Glucosídeos/química , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Dados de Sequência Molecular , Óxido Nítrico Sintase Tipo II/metabolismo , Fenóis/química , Fosforilação/efeitos dos fármacos , Transdução de Sinais , Fator de Transcrição AP-1/metabolismo , Tirosina/metabolismo , Células U937
16.
Life Sci ; 121: 117-23, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25498893

RESUMO

AIMS: Extremely low frequency electromagnetic fields (ELF-EMFs) are widely employed in electrical appliances and different equipment such as television sets, mobile phones, computers and microwaves. The molecular mechanism through which ELF-EMFs can influence cellular behavior is still unclear. A hypothesis is that ELF-EMFs could interfere with chemical reactions involving free radical production. Under physiologic conditions, cells maintain redox balance through production of ROS/RNS and antioxidant molecules. The altered balance between ROS generation and elimination plays a critical role in a variety of pathologic conditions including neurodegenerative diseases, aging and cancer. Actually, there is a disagreement as to whether there is a causal or coincidental relationship between ELF-EMF exposure and leukemia development. Increased ROS levels have been observed in several hematopoietic malignancies including acute and chronic myeloid leukemias. MAIN METHODS: In our study, the effect of ELF-EMF exposure on catalase, cytochrome P450 and inducible nitric oxide synthase activity and their expression by Western blot analysis in myelogenous leukemia cell line K562 was evaluated. KEY FINDINGS: A significant modulation of iNOS, CAT and Cyt P450 protein expression was recorded as a result of ELF-EMF exposure in both phorbol 12-myristate 13-acetate (PMA)-stimulated and non-stimulated cell lines. Modulation in kinetic parameters of CAT, CYP-450 and iNOS enzymes in response to ELF-EMF indicates an interaction between the ELF-EMF and the enzymological system. SIGNIFICANCE: These new insights might be important in establishing a mechanistic framework at the molecular level within which the possible effects of ELF-EMF on health can be understood.


Assuntos
Catalase/efeitos da radiação , Sistema Enzimático do Citocromo P-450/efeitos da radiação , Campos Eletromagnéticos , Leucemia Eritroblástica Aguda/enzimologia , Óxido Nítrico Sintase/efeitos da radiação , Catalase/biossíntese , Sistema Enzimático do Citocromo P-450/biossíntese , Humanos , Células K562 , Óxido Nítrico Sintase/biossíntese , Espécies Reativas de Oxigênio/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Células Tumorais Cultivadas
17.
PLoS One ; 9(7): e101247, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24983620

RESUMO

BACKGROUND: Emotional intelligence (EI) can be broadly defined as the ability to cope with environmental demands. In the scientific research, however, there is not a univocal precise definition of EI and recent articles have underlined the necessity to explore its biological basis to advance understanding of the construct. The aim of study was to investigate if the antioxidant network may be associated with typical-performance or trait EI. METHODS: The study group consisted of 50 women (age, M = 25.10, SD = 3.87). Super Oxide Dismutase (SOD), Catalase (CAT), Glutathione Reductase (GR), and Glutathione Peroxidase (GPx) activities were evaluated on proteins extracted from Peripheral Blood Mononuclear Cells. Participants completed the Italian version of the EQ-i (Bar-On, 1997) as a measure of trait EI. RESULTS: We observed positive and significant correlations between some biological variables and EQ-i scores, and a significant predictive effect of CAT activity when controlling for related biological variables, age, and smoking. CONCLUSIONS: Our preliminary study suggests that the antioxidant network may constitute some of trait EI's biological basis. In particular, CAT and the SOD/CAT ratio could be two biological variables involved in some specific components of EI.


Assuntos
Antioxidantes/metabolismo , Catalase/análise , Inteligência Emocional/fisiologia , Glutationa Peroxidase/análise , Glutationa Redutase/análise , Superóxido Dismutase/análise , Adulto , Feminino , Humanos , Leucócitos Mononucleares/enzimologia , Estresse Oxidativo , Adulto Jovem
18.
Open Biol ; 4(6): 140026, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24920275

RESUMO

Resistance to erythropoietin (EPO) affects a significant number of anaemic patients with end-stage renal disease. Previous reports suggest that inflammation is one of the major independent predictors of EPO resistance, and the effects of EPO treatment on inflammatory mediators are not well established. The aim of this study was to investigate EPO-induced modification to gene expression in primary cultured leucocytes. Microarray experiments were performed on primed ex vivo peripheral blood mononuclear cells (PBMCs) and treated with human EPO-α. Data suggested that EPO-α modulated genes involved in cell movement and interaction in primed PBMCs. Of note, EPO-α exerts anti-inflammatory effects inhibiting the expression of pro-inflammatory cytokine IL-8 and its receptor CXCR2; by contrast, EPO-α increases expression of genes relating to promotion of inflammation encoding for IL-1ß and CCL8, and induces de novo synthesis of IL-1α, CXCL1 and CXCL5 in primed cells. The reduction in MAPK p38-α activity is involved in modulating both IL-1ß and IL-8 expression. Unlike the induction of MAPK, Erk1/2 activity leads to upregulation of IL-1ß, but does not affect IL-8 expression and release. Furthermore, EPO-α treatment of primed cells induces the activation of caspase-1 upstream higher secretion of IL-1ß, and this process is not dependent on caspase-8 activation. In conclusion, our findings highlight new potential molecules involved in EPO resistance and confirm the anti-inflammatory role for EPO, but also suggest a plausible in vivo scenario in which the positive correlation found between EPO resistance and elevated levels of some pro-inflammatory mediators is due to treatment with EPO itself.


Assuntos
Eritropoetina/metabolismo , Perfilação da Expressão Gênica , Leucócitos Mononucleares/metabolismo , Células Cultivadas , Humanos , Leucócitos Mononucleares/citologia
19.
PLoS One ; 9(2): e88359, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24520374

RESUMO

Recently, astaxanthin (ASTA) studies have focused on several biological functions such as radical scavenging, singlet oxygen quenching, anti-carcinogenesis, anti-diabetic, anti-obesity, anti-inflammatory, anti-melanogenesis, and immune enhancement activities. In this study, we investigated the potential role protective of ASTA, an antioxidant marine carotenoid, in restoring physiological conditions in U937 cells stimulated with LPS (10 µg/ml). Our results show that pre-treatment with ASTA (10 µM) for 1 h attenuates the LPS-induced toxicity and ROS production. The beneficial effect of ASTA is associated with a reduction intracellular O2 (-) production by restoring the antioxidant network activity of superoxide dismutase (SOD) and catalase (CAT), which influence HO-1 expression and activity by inhibiting nuclear translocation of Nrf2. We accordingly hypothesize that ASTA has therapeutic properties protecting U937 cells from LPS-induced inflammatory and oxidative stress.


Assuntos
Lipopolissacarídeos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Superóxidos/metabolismo , Antioxidantes/metabolismo , Catalase/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Nitroazul de Tetrazólio/metabolismo , Superóxido Dismutase/metabolismo , Células U937 , Xantofilas/química , Xantofilas/farmacologia
20.
Electrophoresis ; 34(15): 2275-80, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23712818

RESUMO

Analytical methods for quantification of 5'-methylcytosine in genomes are important tools to investigate epigenetic changes in gene expression during development, differentiation, aging, or cancer. Here, we report a novel genomic methylation content assay based on enzymatic hydrolysis of DNA and MEKC separation of 5'-deoxyribonucleoside monophosphates (dNMP) using the cationic surfactant CTAB as pseudostationary phase. Calf Thymus DNA was used during method development to determine electrophoretic parameters and electrolyte composition for a complete separation between 2'-deoxycytosine-5'-monophosphate and 2'-deoxy-5'-methylcytosine 5'-monophosphate (d5mCMP). Methylated and not methylated oligonucleotides were used to confirm the identity of each peak and evaluate analytical parameters of the method. The LOD of the method was found to be 12.5 pmol/µL for d5mCMP.


Assuntos
Cromatografia Capilar Eletrocinética Micelar/métodos , Metilação de DNA , DNA/metabolismo , Espectrofotometria Ultravioleta/métodos , Animais , Bovinos , Cetrimônio , Compostos de Cetrimônio , Monofosfato de Citidina/análogos & derivados , Monofosfato de Citidina/análise , Monofosfato de Citidina/química , DNA/genética , Hidrólise , Limite de Detecção , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA