Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38405932

RESUMO

Post-pregnancy breast cancer often carries a poor prognosis, posing a major clinical challenge. The increasing trend of later-life pregnancies exacerbates this risk, highlighting the need for effective chemoprevention strategies. Current options, limited to selective estrogen receptor modulators, aromatase inhibitors, or surgical procedures, offer limited efficacy and considerable side effects. Here, we report that cabergoline, a dopaminergic agonist, reduces the risk of breast cancer post-pregnancy in a Brca1/P53-deficient mouse model, with implications for human breast cancer prevention. We show that a single dose of cabergoline administered post-pregnancy significantly delayed the onset and reduced the incidence of breast cancer in Brca1/P53-deficient mice. Histological analysis revealed a notable acceleration in post-lactational involution over the short term, characterized by increased apoptosis and altered gene expression related to ion transport. Over the long term, histological changes in the mammary gland included a reduction in the ductal component, decreased epithelial proliferation, and a lower presence of recombinant Brca1/P53 target cells, which are precursors of tumors. These changes serve as indicators of reduced breast cancer susceptibility. Additionally, RNA sequencing identified gene expression alterations associated with decreased proliferation and mammary gland branching. Our findings highlight a mechanism wherein cabergoline enhances the protective effect of pregnancy against breast cancer by potentiating postlactational involution. Notably, a retrospective cohort study in women demonstrated a markedly lower incidence of post-pregnancy breast cancer in those treated with cabergoline compared to a control group. Our work underscores the importance of enhancing postlactational involution as a strategy for breast cancer prevention, and identifies cabergoline as a promising, low-risk option in breast cancer chemoprevention. This strategy has the potential to revolutionize breast cancer prevention approaches, particularly for women at increased risk due to genetic factors or delayed childbirth, and has wider implications beyond hereditary breast cancer cases.

2.
BMC Med ; 20(1): 59, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35144591

RESUMO

INTRODUCTION: Bevacizumab improves survival outcomes in women diagnosed with epithelial ovarian cancer (EOC). Pre-clinical data showed that the c-MET/VEGFR-2 heterocomplex negates VEGF inhibition through activation of c-MET signalling, leading to a more invasive and metastatic phenotype. We evaluated the clinical significance of c-MET and VEGFR-2 co-localisation and its association with VEGF pathway-related single nucleotide polymorphisms (SNPs) in women participating in the phase 3 trial, ICON7 (ClinicalTrials.gov identifier: NCT00262847). MATERIALS AND METHODS: Patients had FIGO stage I-IIA grade 3/poorly differentiated or clear cell carcinoma or stage IIB-IV epithelial ovarian, primary peritoneal or fallopian tube cancer. Immunofluorescence staining for co-localised c-MET and VEGFR-2 on tissue microarrays and genotyping of germline DNA from peripheral blood leukocytes for VEGFA and VEGFR-2 SNPs was performed. The significance of these biomarkers was assessed against survival. RESULTS: Tissue microarrays from 178 women underwent immunofluorescence staining. Multivariable analysis showed that greater c-MET/VEGFR-2 co-localisation predicted worse OS in patients treated with bevacizumab after adjusting for FIGO stage and debulking surgery outcome (hazard ratio [HR] 1.034, 95% confidence interval [95%CI] 1.010-1.059). Women in the c-MET/VEGFR-2HIGH group treated with bevacizumab demonstrated significantly reduced OS (39.3 versus > 60 months; HR 2.00, 95%CI 1.08-3.72). Germline DNA from 449 women underwent genotyping. In the bevacizumab group, those women with the VEGFR-2 rs2305945 G/G variant had a trend towards shorter PFS compared with G/T or T/T variants (18.3 versus 23.0 months; HR 0.74, 95%CI 0.53-1.03). CONCLUSIONS: In bevacizumab-treated women diagnosed with EOC, high c-MET/VEGFR-2 co-localisation on tumour tissue and the VEGFR-2 rs2305945 G/G variant, which may be biologically related, were associated with worse survival outcomes.


Assuntos
Neoplasias Ovarianas , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Bevacizumab/uso terapêutico , Biomarcadores , Carcinoma Epitelial do Ovário/tratamento farmacológico , Carcinoma Epitelial do Ovário/genética , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/uso terapêutico
3.
Magn Reson Med ; 84(3): 1250-1263, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32057115

RESUMO

PURPOSE: MRI biomarkers of tumor response to treatment are typically obtained from parameters derived from a model applied to pre-treatment and post-treatment data. However, as tumors are spatially and temporally heterogeneous, different models may be necessary in different tumor regions, and model suitability may change over time. This work evaluates how the suitability of two diffusion-weighted (DW) MRI models varies spatially within tumors at the voxel level and in response to radiotherapy, potentially allowing inference of qualitatively different tumor microenvironments. METHODS: DW-MRI data were acquired in CT26 subcutaneous allografts before and after radiotherapy. Restricted and time-independent diffusion models were compared, with regions well-described by the former hypothesized to reflect cellular tissue, and those well-described by the latter expected to reflect necrosis or oedema. Technical and biological validation of the percentage of tissue described by the restricted diffusion microstructural model (termed %MM) was performed through simulations and histological comparison. RESULTS: Spatial and radiotherapy-related variation in model suitability was observed. %MM decreased from a mean of 64% at baseline to 44% 6 days post-radiotherapy in the treated group. %MM correlated negatively with the percentage of necrosis from histology, but overestimated it due to noise. Within MM regions, microstructural parameters were sensitive to radiotherapy-induced changes. CONCLUSIONS: There is spatial and radiotherapy-related variation in different models' suitability for describing diffusion in tumor tissue, suggesting the presence of different and changing tumor sub-regions. The biological and technical validation of the proposed %MM cancer imaging biomarker suggests it correlates with, but overestimates, the percentage of necrosis.


Assuntos
Imagem de Difusão por Ressonância Magnética , Neoplasias , Difusão , Humanos , Imageamento por Ressonância Magnética , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Microambiente Tumoral
4.
Clin Cancer Res ; 25(13): 3818-3829, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31053599

RESUMO

PURPOSE: Hypoxia is associated with poor prognosis and is predictive of poor response to cancer treatments, including radiotherapy. Developing noninvasive biomarkers that both detect hypoxia prior to treatment and track change in tumor hypoxia following treatment is required urgently. EXPERIMENTAL DESIGN: We evaluated the ability of oxygen-enhanced MRI (OE-MRI) to map and quantify therapy-induced changes in tumor hypoxia by measuring oxygen-refractory signals in perfused tissue (perfused Oxy-R). Clinical first-in-human study in patients with non-small cell lung cancer (NSCLC) was performed alongside preclinical experiments in two xenograft tumors (Calu6 NSCLC model and U87 glioma model). RESULTS: MRI perfused Oxy-R tumor fraction measurement of hypoxia was validated with ex vivo tissue pathology in both xenograft models. Calu6 and U87 experiments showed that MRI perfused Oxy-R tumor volume was reduced relative to control following single fraction 10-Gy radiation and fractionated chemoradiotherapy (P < 0.001) due to both improved perfusion and reduced oxygen consumption rate. Next, evaluation of 23 patients with NSCLC showed that OE-MRI was clinically feasible and that tumor perfused Oxy-R volume is repeatable [interclass correlation coefficient: 0.961 (95% CI, 0.858-0.990); coefficient of variation: 25.880%]. Group-wise perfused Oxy-R volume was reduced at 14 days following start of radiotherapy (P = 0.015). OE-MRI detected between-subject variation in hypoxia modification in both xenograft and patient tumors. CONCLUSIONS: These findings support applying OE-MRI biomarkers to monitor hypoxia modification, to stratify patients in clinical trials of hypoxia-modifying therapies, to identify patients with hypoxic tumors that may fail treatment with immunotherapy, and to guide adaptive radiotherapy by mapping regional hypoxia.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Hipóxia/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/metabolismo , Imageamento por Ressonância Magnética , Oxigênio/metabolismo , Animais , Biomarcadores , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Aumento da Imagem , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/radioterapia , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/normas , Camundongos , Medicina de Precisão/métodos , Medicina de Precisão/normas , Fluxo Sanguíneo Regional , Reprodutibilidade dos Testes , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Cell Rep ; 25(12): 3504-3518.e6, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30566873

RESUMO

The exact identity of castrate-resistant (CR) cells and their relation to CR prostate cancer (CRPC) is unresolved. We use single-cell gene profiling to analyze the molecular heterogeneity in basal and luminal compartments. Within the luminal compartment, we identify a subset of cells intrinsically resistant to castration with a bi-lineage gene expression pattern. We discover LY6D as a marker of CR prostate progenitors with multipotent differentiation and enriched organoid-forming capacity. Lineage tracing further reveals that LY6D+ CR luminal cells can produce LY6D- luminal cells. In contrast, in luminal cells lacking PTEN, LY6D+ cells predominantly give rise to LY6D+ tumor cells, contributing to high-grade PIN lesions. Gene expression analyses in patients' biopsies indicate that LY6D expression correlates with early disease progression, including progression to CRPC. Our studies thus identify a subpopulation of luminal progenitors characterized by LY6D expression and intrinsic castration resistance. LY6D may serve as a prognostic maker for advanced prostate cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Moléculas de Adesão Celular/metabolismo , Células-Tronco Neoplásicas/metabolismo , Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Análise de Célula Única , Animais , Carcinogênese/metabolismo , Carcinogênese/patologia , Linhagem da Célula , Progressão da Doença , Células Epiteliais/metabolismo , Proteínas Ligadas por GPI/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Neoplásicas/patologia , Organoides/metabolismo , Organoides/patologia , Regeneração
6.
PLoS Genet ; 11(7): e1005345, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26134678

RESUMO

The essential mammalian gene TACC3 is frequently mutated and amplified in cancers and its fusion products exhibit oncogenic activity in glioblastomas. TACC3 functions in mitotic spindle assembly and chromosome segregation. In particular, phosphorylation on S558 by the mitotic kinase, Aurora-A, promotes spindle recruitment of TACC3 and triggers the formation of a complex with ch-TOG-clathrin that crosslinks and stabilises kinetochore microtubules. Here we map the Aurora-A-binding interface in TACC3 and show that TACC3 potently activates Aurora-A through a domain centered on F525. Vertebrate cells carrying homozygous F525A mutation in the endogenous TACC3 loci exhibit defects in TACC3 function, namely perturbed localization, reduced phosphorylation and weakened interaction with clathrin. The most striking feature of the F525A cells however is a marked shortening of mitosis, at least in part due to rapid spindle assembly. F525A cells do not exhibit chromosome missegregation, indicating that they undergo fast yet apparently faithful mitosis. By contrast, mutating the phosphorylation site S558 to alanine in TACC3 causes aneuploidy without a significant change in mitotic duration. Our work has therefore defined a regulatory role for the Aurora-A-TACC3 interaction beyond the act of phosphorylation at S558. We propose that the regulatory relationship between Aurora-A and TACC3 enables the transition from the microtubule-polymerase activity of TACC3-ch-TOG to the microtubule-crosslinking activity of TACC3-ch-TOG-clathrin complexes as mitosis progresses. Aurora-A-dependent control of TACC3 could determine the balance between these activities, thereby influencing not only spindle length and stability but also the speed of spindle formation with vital consequences for chromosome alignment and segregation.


Assuntos
Aurora Quinase A/metabolismo , Proteínas de Transporte/genética , Proteínas Fetais/genética , Proteínas Associadas aos Microtúbulos/genética , Fuso Acromático/metabolismo , Fatores de Transcrição/genética , Proteínas de Xenopus/genética , Aneuploidia , Animais , Sítios de Ligação/genética , Linhagem Celular Tumoral , Galinhas , Segregação de Cromossomos/genética , Clatrina/metabolismo , Células HeLa , Humanos , Cinetocoros , Camundongos , Microtúbulos/metabolismo , Mitose/genética , Fosforilação/genética , Ligação Proteica/genética , Estrutura Terciária de Proteína , Fuso Acromático/genética , Xenopus laevis
7.
EMBO J ; 27(19): 2567-79, 2008 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-18756265

RESUMO

The centrosomal kinase Aurora A (AurA) is required for cell cycle progression, centrosome maturation and spindle assembly. However, the way it participates in spindle assembly is still quite unclear. Using the Xenopus egg extract system, we have dissected the role of AurA in the different microtubule (MT) assembly pathways involved in spindle formation. We developed a new tool based on the activation of AurA by TPX2 to clearly define the requirements for localization and activation of the kinase during spindle assembly. We show that localized AurA kinase activity is required to target factors involved in MT nucleation and stabilization to the centrosome, therefore promoting the formation of a MT aster. In addition, AurA strongly enhances MT nucleation mediated by the Ran pathway through cytoplasmic phosphorylation. Altogether, our data show that AurA exerts an effect as a key regulator of MT assembly during M phase and therefore of bipolar spindle formation.


Assuntos
Oócitos , Proteínas Serina-Treonina Quinases/metabolismo , Fuso Acromático/metabolismo , Animais , Aurora Quinases , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centrossomo/metabolismo , Masculino , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oócitos/química , Oócitos/citologia , Oócitos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Espermatozoides/citologia , Espermatozoides/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis , Proteína ran de Ligação ao GTP/metabolismo
8.
Trends Cell Biol ; 18(8): 379-88, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18656360

RESUMO

A major quest in cell biology is to understand the molecular mechanisms underlying the high plasticity of the microtubule network at different stages of the cell cycle, and during and after differentiation. Initial reports described the centrosomal localization of proteins possessing transforming acidic coiled-coil (TACC) domains. This discovery prompted several groups to examine the role of TACC proteins during cell division, leading to indications that they are important players in this complex process in different organisms. Here, we review the current understanding of the role of TACC proteins in the regulation of microtubule dynamics, and we highlight the complexity of centrosome function.


Assuntos
Centrossomo/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Animais , Proteínas de Transporte , Divisão Celular , Proteínas Fetais , Humanos , Microtúbulos/fisiologia , Proteínas Nucleares , Proteínas Supressoras de Tumor
9.
Nat Cell Biol ; 10(7): 858-65, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18536713

RESUMO

Meiotic progression requires the translational activation of stored maternal mRNAs, such as those encoding cyclin B1 or mos. The translation of these mRNAs is regulated by the cytoplasmic polyadenylation element (CPE) present in their 3'UTRs, which recruits the CPE-binding protein CPEB. This RNA-binding protein not only dictates the timing and extent of translational activation by cytoplasmic polyadenylation but also participates, together with the translational repressor Maskin, in the transport and localization, in a quiescent state, of its targets to subcellular locations where their translation will take place. During the early development of Xenopus laevis, CPEB localizes at the animal pole of oocytes and later on at embryonic spindles and centrosomes. Disruption of embryonic CPEB-mediated translational regulation results in abnormalities in the mitotic apparatus and inhibits embryonic mitosis. Here we show that spindle-localized translational activation of CPE-regulated mRNAs, encoding for proteins with a known function in spindle assembly and chromosome segregation, is essential for completion of the first meiotic division and for chromosome segregation in Xenopus oocytes.


Assuntos
Segregação de Cromossomos , Regulação da Expressão Gênica no Desenvolvimento , Meiose/fisiologia , Oócitos , Sequências Reguladoras de Ácido Nucleico , Fuso Acromático/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Ciclina B/genética , Ciclina B/metabolismo , Ciclina B1 , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Cinesinas/genética , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oócitos/citologia , Oócitos/fisiologia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Poliadenilação , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas c-mos/genética , Proteínas Proto-Oncogênicas c-mos/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA