Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38139245

RESUMO

Cisplatin is a chemotherapeutic drug for the treatment of several solid tumors, whose use is limited by its nephrotoxicity, neurotoxicity, ototoxicity, and development of resistance. The toxicity is caused by DNA cross-linking, increase in reactive oxygen species and/or depletion of cell antioxidant defenses. The aim of the work was to study the effect of antioxidant compounds (Lisosan G, Taurisolo®) or hydrogen sulfide (H2S)-releasing compounds (erucin) in the auditory HEI-OC1 cell line treated with cisplatin. Cell viability was determined using the MTT assay. Caspase and sphingomyelinase activities were measured by fluorometric and colorimetric methods, respectively. Expression of transcription factors, apoptosis hallmarks and genes codifying for antioxidant response proteins were measured by Western blot and/or RT-qPCR. Lisosan G, Taurisolo® and erucin did not show protective effects. Sodium hydrosulfide (NaHS), a donor of H2S, increased the viability of cisplatin-treated cells and the transcription of heme oxygenase 1, superoxide dismutase 2, NAD(P)H quinone dehydrogenase type 1 and the catalytic subunit of glutamate-cysteine ligase and decreased reactive oxygen species (ROS), the Bax/Bcl2 ratio, caspase-3, caspase-8 and acid sphingomyelinase activity. Therefore, NaHS might counteract the cytotoxic effect of cisplatin by increasing the antioxidant response and by reducing ROS levels and caspase and acid sphingomyelinase activity.


Assuntos
Antineoplásicos , Cisplatino , Cisplatino/farmacologia , Cisplatino/metabolismo , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Células Ciliadas Auditivas/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Apoptose , Caspases/metabolismo , Suplementos Nutricionais , Sobrevivência Celular
2.
Cancers (Basel) ; 14(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36230882

RESUMO

Uric acid is the final product of purine catabolism in man and apes. The serum concentration of uric acid is sex-, age- and diet-dependent and is maintained close to its maximal solubility, indicating that it plays some important role. Indeed, it has been demonstrated that, at physiological concentrations, uric acid is a powerful antioxidant, while at high intracellular concentrations, it is a pro-oxidant molecule. In this review, we describe the possible causes of uric acid accumulation or depletion and some of the metabolic and regulatory pathways it may impact. Particular attention has been given to fructose, which, because of the complex correlation between carbohydrate and nucleotide metabolism, causes uric acid accumulation. We also present recent results on the positive and negative effects played by uric acid in cancer and some new findings and hypotheses about the implication of this metabolite in a variety of signaling pathways, which can play a role in the pathogenesis of diseases such as metabolic syndrome, diabetes, and inflammation, thus favoring the development of cancer. The loss of uricase in Homo sapiens and great apes, although exposing these species to the potentially adverse effects of uric acid, appears to be associated with evolutionary advantages.

3.
Int J Mol Sci ; 22(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209768

RESUMO

Cytosolic 5'-nucleotidase II (cN-II) is an allosteric catabolic enzyme that hydrolyzes IMP, GMP, and AMP. The enzyme can assume at least two different structures, being the more active conformation stabilized by ATP and the less active by inorganic phosphate. Therefore, the variation in ATP concentration can control both structure and activity of cN-II. In this paper, using a capillary electrophoresis technique, we demonstrated that a partial silencing of cN-II in a pulmonary carcinoma cell line (NCI-H292) is accompanied by a decrease in adenylate pool, without affecting the energy charge. We also found that cN-II silencing decreased proliferation and increased oxidative metabolism, as indicated by the decreased production of lactate. These effects, as demonstrated by Western blotting, appear to be mediated by both p53 and AMP-activated protein kinase, as most of them are prevented by pifithrin-α, a known p53 inhibitor. These results are in line with our previous observations of a shift towards a more oxidative and less proliferative phenotype of tumoral cells with a low expression of cN-II, thus supporting the search for specific inhibitors of this enzyme as a therapeutic tool for the treatment of tumors.


Assuntos
5'-Nucleotidase/genética , Carcinoma Mucoepidermoide/genética , Metabolismo Energético/genética , Neoplasias Pulmonares/genética , 5'-Nucleotidase/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Carcinoma Mucoepidermoide/metabolismo , Carcinoma Mucoepidermoide/patologia , Linhagem Celular Tumoral , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Transdução de Sinais/genética , Proteína Supressora de Tumor p53/metabolismo
4.
Front Pharmacol ; 12: 672182, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054547

RESUMO

Adenosine, acting both through G-protein coupled adenosine receptors and intracellularly, plays a complex role in multiple physiological and pathophysiological processes by modulating neuronal plasticity, astrocytic activity, learning and memory, motor function, feeding, control of sleep and aging. Adenosine is involved in stroke, epilepsy and neurodegenerative pathologies. Extracellular concentration of adenosine in the brain is tightly regulated. Adenosine may be generated intracellularly in the central nervous system from degradation of AMP or from the hydrolysis of S-adenosyl homocysteine, and then exit via bi-directional nucleoside transporters, or extracellularly by the metabolism of released nucleotides. Inactivation of extracellular adenosine occurs by transport into neurons or neighboring cells, followed by either phosphorylation to AMP by adenosine kinase or deamination to inosine by adenosine deaminase. Modulation of the nucleoside transporters or of the enzymatic activities involved in the metabolism of adenosine, by affecting the levels of this nucleoside and the activity of adenosine receptors, could have a role in the onset or the development of central nervous system disorders, and can also be target of drugs for their treatment. In this review, we focus on the contribution of 5'-nucleotidases, adenosine kinase, adenosine deaminase, AMP deaminase, AMP-activated protein kinase and nucleoside transporters in epilepsy, cognition, and neurodegenerative diseases with a particular attention on amyotrophic lateral sclerosis and Huntington's disease. We include several examples of the involvement of components of the adenosine metabolism in learning and of the possible use of modulators of enzymes involved in adenosine metabolism or nucleoside transporters in the amelioration of cognition deficits.

5.
Cells ; 10(1)2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477638

RESUMO

Cytosolic 5'-nucleotidase II (NT5C2) is a highly regulated enzyme involved in the maintenance of intracellular purine and the pyrimidine compound pool. It dephosphorylates mainly IMP and GMP but is also active on AMP. This enzyme is highly expressed in tumors, and its activity correlates with a high rate of proliferation. In this paper, we show that the recombinant purified NT5C2, in the presence of a physiological concentration of the inhibitor inorganic phosphate, is very sensitive to changes in the adenylate energy charge, especially from 0.4 to 0.9. The enzyme appears to be very sensitive to pro-oxidant conditions; in this regard, the possible involvement of a disulphide bridge (C175-C547) was investigated by using a C547A mutant NT5C2. Two cultured cell models were used to further assess the sensitivity of the enzyme to oxidative stress conditions. NT5C2, differently from other enzyme activities, was inactivated and not rescued by dithiothreitol in a astrocytoma cell line (ADF) incubated with hydrogen peroxide. The incubation of a human lung carcinoma cell line (A549) with 2-deoxyglucose lowered the cell energy charge and impaired the interaction of NT5C2 with the ice protease-activating factor (IPAF), a protein involved in innate immunity and inflammation.


Assuntos
5'-Nucleotidase/metabolismo , Metabolismo Energético , Estresse Oxidativo , 5'-Nucleotidase/genética , Células A549 , Animais , Bovinos , Humanos
6.
Cancers (Basel) ; 11(9)2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31547393

RESUMO

The enzymes of both de novo and salvage pathways for purine nucleotide synthesis are regulated to meet the demand of nucleic acid precursors during proliferation. Among them, the salvage pathway enzymes seem to play the key role in replenishing the purine pool in dividing and tumour cells that require a greater amount of nucleotides. An imbalance in the purine pools is fundamental not only for preventing cell proliferation, but also, in many cases, to promote apoptosis. It is known that tumour cells harbour several mutations that might lead to defective apoptosis-inducing pathways, and this is probably at the basis of the initial expansion of the population of neoplastic cells. Therefore, knowledge of the molecular mechanisms that lead to apoptosis of tumoural cells is key to predicting the possible success of a drug treatment and planning more effective and focused therapies. In this review, we describe how the modulation of enzymes involved in purine metabolism in tumour cells may affect the apoptotic programme. The enzymes discussed are: ectosolic and cytosolic 5'-nucleotidases, purine nucleoside phosphorylase, adenosine deaminase, hypoxanthine-guanine phosphoribosyltransferase, and inosine-5'-monophosphate dehydrogenase, as well as recently described enzymes particularly expressed in tumour cells, such as deoxynucleoside triphosphate triphosphohydrolase and 7,8-dihydro-8-oxoguanine triphosphatase.

7.
Int J Mol Sci ; 19(11)2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30441833

RESUMO

The growing evidence of the involvement of purine compounds in signaling, of nucleotide imbalance in tumorigenesis, the discovery of purinosome and its regulation, cast new light on purine metabolism, indicating that well known biochemical pathways may still surprise. Adenosine deaminase is important not only to preserve functionality of immune system but also to ensure a correct development and function of central nervous system, probably because its activity regulates the extracellular concentration of adenosine and therefore its function in brain. A lot of work has been done on extracellular 5'-nucleotidase and its involvement in the purinergic signaling, but also intracellular nucleotidases, which regulate the purine nucleotide homeostasis, play unexpected roles, not only in tumorigenesis but also in brain function. Hypoxanthine guanine phosphoribosyl transferase (HPRT) appears to have a role in the purinosome formation and, therefore, in the regulation of purine synthesis rate during cell cycle with implications in brain development and tumors. The final product of purine catabolism, uric acid, also plays a recently highlighted novel role. In this review, we discuss the molecular mechanisms underlying the pathological manifestations of purine dysmetabolisms, focusing on the newly described/hypothesized roles of cytosolic 5'-nucleotidase II, adenosine kinase, adenosine deaminase, HPRT, and xanthine oxidase.


Assuntos
Encefalopatias Metabólicas Congênitas/metabolismo , Encéfalo/metabolismo , Neoplasias/metabolismo , Purinas/metabolismo , Animais , Encéfalo/enzimologia , Encefalopatias Metabólicas Congênitas/genética , Humanos
8.
Int J Mol Sci ; 19(7)2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30037008

RESUMO

Purine homeostasis is maintained by a purine cycle in which the regulated member is a cytosolic 5'-nucleotidase II (cN-II) hydrolyzing IMP and GMP. Its expression is particularly high in proliferating cells, indeed high cN-II activity or expression in hematological malignancy has been associated to poor prognosis and chemoresistance. Therefore, a strong interest has grown in developing cN-II inhibitors, as potential drugs alone or in combination with other compounds. As a model to study the effect of cN-II inhibition we utilized a lung carcinoma cell line (A549) in which the enzyme was partially silenced and its low activity conformation was stabilized through incubation with 2-deoxyglucose. We measured nucleotide content, reduced glutathione, activities of enzymes involved in glycolysis and Krebs cycle, protein synthesis, mitochondrial function, cellular proliferation, migration and viability. Our results demonstrate that high cN-II expression is associated with a glycolytic, highly proliferating phenotype, while silencing causes a reduction of proliferation, protein synthesis and migration ability, and an increase of oxidative performances. Similar results were obtained in a human astrocytoma cell line. Moreover, we demonstrate that cN-II silencing is concomitant with p53 phosphorylation, suggesting a possible involvement of this pathway in mediating some of cN-II roles in cancer cell biology.


Assuntos
5'-Nucleotidase/metabolismo , Proteína Supressora de Tumor p53/metabolismo , 5'-Nucleotidase/genética , Células A549 , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Desoxiglucose/farmacologia , Glutationa/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Cicatrização/efeitos dos fármacos
9.
Sci Rep ; 8(1): 10599, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30006630

RESUMO

The natural alkaloid berberine has several pharmacological properties and recently received attention as a potential anticancer agent. In this work, we investigated the molecular mechanisms underlying the anti-tumor effect of berberine on glioblastoma U343 and pancreatic carcinoma MIA PaCa-2 cells. Human dermal fibroblasts (HDF) were used as non-cancer cells. We show that berberine differentially affects cell viability, displaying a higher cytotoxicity on the two cancer cell lines than on HDF. Berberine also affects cell cycle progression, senescence, caspase-3 activity, autophagy and migration in a cell-specific manner. In particular, in HDF it induces cell cycle arrest in G2 and senescence, but not autophagy; in the U343 cells, berberine leads to cell cycle arrest in G2 and induces both senescence and autophagy; in MIA PaCa-2 cells, the alkaloid induces arrest in G1, senescence, autophagy, it increases caspase-3 activity and impairs migration/invasion. As demonstrated by decreased citrate synthase activity, the three cell lines show mitochondrial dysfunction following berberine exposure. Finally, we observed that berberine modulates the expression profile of genes involved in different pathways of tumorigenesis in a cell line-specific manner. These findings have valuable implications for understanding the complex functional interactions between berberine and specific cell types.


Assuntos
Berberina/farmacologia , Carcinogênese/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Berberina/uso terapêutico , Carcinogênese/patologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Citrato (si)-Sintase/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Fibroblastos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia
10.
Biochim Biophys Acta ; 1850(7): 1354-61, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25857773

RESUMO

BACKGROUND: Type II cytosolic 5'-nucleotidase (cN-II) catalyzes the hydrolysis of purine and, to some extent, of pyrimidine monophosphates. Recently, a number of papers demonstrated the involvement of cN-II in the mechanisms of resistance to antitumor drugs such as cytarabine, gemcitabine and fludarabine. Furthermore, cN-II is involved in drug resistance in patients affected by hematological malignancies influencing the clinical outcome. Although the implication of cN-II expression and/or activity appears to be correlated with drug resistance and poor prognosis, the molecular mechanism by which cN-II mediates drug resistance is still unknown. METHODS: HEK 293 cells carrying an expression vector coding for cN-II linked to green fluorescent protein (GFP) and a control vector without cN-II were utilized. A highly sensitive capillary electrophoresis method was applied for nucleotide pool determination and cytotoxicity exerted by drugs was determined with 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. RESULTS: Over-expression of cN-II causes a drop of nucleoside triphosphate concentration and a general disturbance of nucleotide pool. Over-expressing cells were resistant to fludarabine, gemcitabine and cytarabine independently of cN-II ability to hydrolyze their monophosphates. CONCLUSIONS: An increase of cN-II expression is sufficient to cause both a general disturbance of nucleotide pool and an increase of half maximal inhibitory concentration (IC50) of the drugs. Since the monophosphates of cytarabine and gemcitabine are not substrates of cN-II, the protection observed cannot be directly ascribed to drug inactivation. GENERAL SIGNIFICANCE: Our results indicate that cN-II exerts a relevant role in nucleotide and drug metabolism through not only enzyme activity but also a mechanism involving a protein-protein interaction, thus playing a general regulatory role in cell survival. SENTENCE: Resistance to fludarabine, gemcitabine and cytarabine can be determined by an increase of cN-II both through dephosphorylation of active drugs and perturbation of nucleotide pool.


Assuntos
5'-Nucleotidase/metabolismo , Antineoplásicos/metabolismo , Nucleotídeos/metabolismo , Pró-Fármacos/metabolismo , 5'-Nucleotidase/genética , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Citarabina/metabolismo , Citarabina/farmacologia , Desoxicitidina/análogos & derivados , Desoxicitidina/metabolismo , Desoxicitidina/farmacologia , Relação Dose-Resposta a Droga , Resistência a Medicamentos/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Guanosina Monofosfato/metabolismo , Células HEK293 , Humanos , Immunoblotting , Inosina Monofosfato/metabolismo , Fosforilação/efeitos dos fármacos , Pró-Fármacos/farmacologia , Especificidade por Substrato , Vidarabina/análogos & derivados , Vidarabina/metabolismo , Vidarabina/farmacologia , Gencitabina
11.
PLoS One ; 10(3): e0121525, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25811392

RESUMO

IMP/GMP preferring cytosolic 5'-nucleotidase II (cN-II) is a bifunctional enzyme whose activities and expression play crucial roles in nucleotide pool maintenance, nucleotide-dependent pathways and programmed cell death. Alignment of primary amino acid sequences of cN-II from human and other organisms show a strong conservation throughout the entire vertebrata taxon suggesting a fundamental role in eukaryotic cells. With the aim to investigate the potential role of this homology in protein-protein interactions, a two hybrid system screening of cN-II interactors was performed in S. cerevisiae. Among the X positive hits, the Leucin Rich Repeat (LRR) domain of Ipaf was found to interact with cN-II. Recombinant Ipaf isoform B (lacking the Nucleotide Binding Domain) was used in an in vitro affinity chromatography assay confirming the interaction obtained in the screening. Moreover, co-immunoprecipitation with proteins from wild type Human Embryonic Kidney 293 T cells demonstrated that endogenous cN-II co-immunoprecipitated both with wild type Ipaf and its LRR domain after transfection with corresponding expression vectors, but not with Ipaf lacking the LRR domain. These results suggest that the interaction takes place through the LRR domain of Ipaf. In addition, a proximity ligation assay was performed in A549 lung carcinoma cells and in MDA-MB-231 breast cancer cells and showed a positive cytosolic signal, confirming that this interaction occurs in human cells. This is the first report of a protein-protein interaction involving cN-II, suggesting either novel functions or an additional level of regulation of this complex enzyme.


Assuntos
5'-Nucleotidase/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas/metabolismo , Animais , Bovinos , Extratos Celulares , Linhagem Celular Tumoral , Células HEK293 , Humanos , Imunoprecipitação , Proteínas de Repetições Ricas em Leucina , Ligação Proteica , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína , Transfecção
12.
Biochem Mol Biol Educ ; 43(3): 142-4, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25704670

RESUMO

Only diazotrophic bacteria, called Rizhobia, living as symbionts in the root nodules of leguminous plants and certain free-living prokaryotic cells can fix atmospheric N2 . In these microorganisms, nitrogen fixation is carried out by the nitrogenase protein complex. However, the reduction of nitrogen to ammonia has an extremely high activation energy due to the stable (unreactive) N≡N triple bond. The structural and functional features of the nitrogenase protein complex, based on the stepwise transfer of eight electrons from reduced ferredoxin to the nitrogenase, coupled to the hydrolysis of 16 ATP molecules, to fix one N2 molecule into two NH3 molecules, is well understood. Yet, a number of different nitrogenase-catalyzed reactions are present in biochemistry textbooks, which might cause misinterpretation. In this article, we show that when trying to balance the reaction catalyzed by the nitrogenase protein complex, it is important to show explicitly the 16 H(+) released by the hydrolysis of the 16 ATP molecules needed to fix the atmospheric N2.


Assuntos
Trifosfato de Adenosina/metabolismo , Amônia/metabolismo , Proteínas de Bactérias/metabolismo , Fixação de Nitrogênio/fisiologia , Nitrogenase/metabolismo , Rhizobium/enzimologia , Trifosfato de Adenosina/química , Amônia/química , Proteínas de Bactérias/química , Nitrogenase/química
13.
Nucleosides Nucleotides Nucleic Acids ; 30(12): 1155-60, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22132970

RESUMO

IMP preferring cytosolic 5'-nucleotidase II (cN-II) is a widespread enzyme whose amino acid sequence is highly conserved among vertebrates. Fluctuations of its activity have been reported in some pathological conditions and its mRNA levels have been proposed as a prognostic factor for poor outcome in patients with adult acute myeloid leukemia. As a member of the oxypurine cycle, cN-II is involved in the regulation of intracellular concentration of 5'-inosine monophosphate (IMP), 5'-guanosine monophosphate (GMP), and also 5-phosphoribose 1-pyrophosphate (PRPP) and is therefore involved in the regulation of purine and pyrimidine de novo and salvage synthesis. In addition, several studies demonstrated the involvement of cN-II in pro-drug metabolism. Notwithstanding some publications indicating that cN-II is essential for the survival of several cell types, its role in cell metabolism remains uncertain. To address this issue, we built two eucaryotic cellular models characterized by different cN-II expression levels: a constitutive cN-II knockdown in the astrocytoma cell line (ADF) by short hairpin RNA (shRNA) strategy and a cN-II expression in the diploid strain RS112 of Saccharomyces cerevisiae. Preliminary results suggest that cN-II is essential for cell viability, probably because it is directly involved in the regulation of nucleotide pools. These two experimental approaches could be very useful for the design of a personalized chemotherapy.


Assuntos
5'-Nucleotidase/metabolismo , 5'-Nucleotidase/genética , Astrocitoma/enzimologia , Astrocitoma/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Recombinação Genética/genética , Transdução Genética
14.
Biochim Biophys Acta ; 1783(8): 1529-35, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18445485

RESUMO

IMP preferring cytosolic 5'-nucleotidase (cN-II) is an ubiquitous nucleotide hydrolysing enzyme. The enzyme is widely distributed and its amino acid sequence is highly conserved among vertebrates. Fluctuations of cN-II activity have been associated with the pathogenesis of neurological disorders. The enzyme appears to be involved in the regulation of the intracellular availability of the purine precursor IMP and also of GMP and AMP, but the contribution of this activity and of its regulation to cell metabolism and to CNS cell functions remains uncertain. To address this issue, we used a vector based short hairpin RNA (shRNA) strategy to knockdown cN-II activity in human astrocytoma cells. Our results demonstrated that 53 h after transduction, cN-II mRNA was reduced to 17.9+/-0.03% of control cells. 19 h later enzyme activity was decreased from 0.7+/-0.026 mU/mg in control ADF cells to 0.45+/-0.046 mU/mg, while cell viability (evaluated by the MTT reduction assay) decreased up to 0.59+/-0.01 (fold vs control) and caspase 3 activity increased from 136+/-5.8 pmol min(-1) mg(-1) in control cells to 639+/-37.5 pmol min(-1) mg(-1) in silenced cells, thus demonstrating that cN-II is essential for cell survival. The decrease of enzyme activity causes apoptosis of the cultured cells without altering intracellular nucleotide and nucleoside concentration or energy charge. Since cN-II is highly expressed in tumour cells, our finding offers a new possible therapeutical approach especially against primary brain tumours such as glioblastoma, and to ameliorate chemotherapy against leukemia.


Assuntos
5'-Nucleotidase/metabolismo , Astrocitoma/enzimologia , 5'-Nucleotidase/antagonistas & inibidores , 5'-Nucleotidase/genética , Adenoviridae/genética , Animais , Apoptose , Astrocitoma/patologia , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Purinas/metabolismo , Interferência de RNA , Ratos
15.
Neurochem Res ; 33(1): 59-65, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17619144

RESUMO

Nucleoside monophosphate phosphohydrolases comprise a family of enzymes dephosphorylating nucleotides both in intracellular and extracellular compartments. Members of this family exhibit different sequence, location, substrate specificity and regulation. Besides the ectosolic 5'-nucleotidase, several cytosolic and one mitochondrial enzymes have been described. Nevertheless, researchers refer any AMP-dephosphorylating activity to as 5'-nucleotidase, lacking a more accurate identification. Increase of AMP hydrolysing activity has been associated with neurological and developmental disorders. The identification of the specific enzyme involved in these pathologies would be fundamental for the comprehension of the linkage between the enzyme activity alteration and brain functions. We demonstrate that the described neurological symptoms are associated with increased ectosolic 5'-nucleotidase activity on the basis of radiochemical assays and immunoblotting analysis. Furthermore, present data evidence that the assay conditions normally applied for the determination of cytosolic 5'-nucleotidases activity in crude extracts are affected by the presence of solubilised ectosolic nucleotidase.


Assuntos
5'-Nucleotidase/metabolismo , Monofosfato de Adenosina/metabolismo , Células Cultivadas , Eletroforese em Gel de Poliacrilamida , Humanos , Hidrólise
16.
J Biol Chem ; 280(14): 13465-9, 2005 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-15699053

RESUMO

In this paper, we show that in vitro xanthosine does not enter any of the pathways known to salvage the other three main natural purine nucleosides: guanosine; inosine; and adenosine. In rat brain extracts and in intact LoVo cells, xanthosine is salvaged to XMP via the phosphotransferase activity of cytosolic 5'-nucleotidase. IMP is the preferred phosphate donor (IMP + xanthosine --> XMP + inosine). XMP is not further phosphorylated. However, in the presence of glutamine, it is readily converted to guanyl compounds. Thus, phosphorylation of xanthosine by cytosolic 5'-nucleotidase circumvents the activity of IMP dehydrogenase, a rate-limiting enzyme, catalyzing the NAD(+)-dependent conversion of IMP to XMP at the branch point of de novo nucleotide synthesis, thus leading to the generation of guanine nucleotides. Mycophenolic acid, an inhibitor of IMP dehydrogenase, inhibits the guanyl compound synthesis via the IMP dehydrogenase pathway but has no effect on the cytosolic 5'-nucleotidase pathway of guanine nucleotides synthesis. We propose that the latter pathway might contribute to the reversal of the in vitro antiproliferative effect exerted by IMP dehydrogenase inhibitors routinely seen with repletion of the guanine nucleotide pools.


Assuntos
5'-Nucleotidase/metabolismo , Citosol/enzimologia , Nucleotídeos de Guanina/biossíntese , Ribonucleosídeos/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Encéfalo/enzimologia , Radioisótopos de Carbono/metabolismo , Linhagem Celular , Humanos , Inosina Monofosfato/metabolismo , Masculino , Fosforilação , Ratos , Ratos Sprague-Dawley , Xantinas
17.
Int J Biochem Cell Biol ; 37(4): 797-808, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15694839

RESUMO

In this paper, we report that cells undergoing metabolic stress conditions may use the ribose moiety of nucleosides as energy source to slow down cellular damage. In fact, the phosphorolytic cleavage of the N-glycosidic bond of nucleosides generates, without energy expense, the phosphorylated pentose, which through pentose phosphate pathway and glycolysis, can be converted to energetic intermediates. In this respect, nucleosides may be considered as energy source, alternative or supplementary to glucose, which may become of primary importance especially in conditions of cellular stress. In accordance with the role of these compounds in energy repletion, we also show that the uptake of nucleosides is increased when the energetic demand of the cell is enhanced. As cell model, we have used a human colon carcinoma cell line, LoVo, and the depletion of ATP, with a concomitant fall in the cell energy charge, has been induced by exclusion of glucose from the medium and pre-incubation with oligomycin, an inhibitor of oxidative phosphorylation. In these conditions of energy starvation, we show that the uptake of 2'-deoxyadenosine in LoVo cells is significantly enhanced, and that the phosphorylated ribose moiety of inosine can be used for energy repletion through anaerobic glycolysis. Our data support previous reports indicating that the phosphorylated ribose stemming from the intracellular catabolism of nucleosides may be used in eukaryots as energy source, and advance our knowledge on the regulation of the uptake of nucleosides in eukaryotic cells.


Assuntos
Nucleosídeos/metabolismo , Proteínas Quinases Ativadas por AMP , Linhagem Celular , Metabolismo Energético , Ativação Enzimática , Complexos Multienzimáticos/metabolismo , Oligomicinas/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo
18.
Eur J Biochem ; 271(23-24): 4881-91, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15606776

RESUMO

Cytosolic 5'-nucleotidase/phosphotransferase specific for 6-hydroxypurine monophosphate derivatives (cN-II), belongs to a class of phosphohydrolases that act through the formation of an enzyme-phosphate intermediate. Sequence alignment with members of the P-type ATPases/L-2-haloacid dehalogenase superfamily identified three highly conserved motifs in cN-II and other cytosolic nucleotidases. Mutagenesis studies at specific amino acids occurring in cN-II conserved motifs were performed. The modification of the measured kinetic parameters, caused by conservative and nonconservative substitutions, suggested that motif I is involved in the formation and stabilization of the covalent enzyme-phosphate intermediate. Similarly, T249 in motif II as well as K292 in motif III also contribute to stabilize the phospho-enzyme adduct. Finally, D351 and D356 in motif III coordinate magnesium ion, which is required for catalysis. These findings were consistent with data already determined for P-type ATPases, haloacid dehalogenases and phosphotransferases, thus suggesting that cN-II and other mammalian 5'-nucleotidases are characterized by a 3D arrangement related to the 2-haloacid dehalogenase superfold. Structural determinants involved in differential regulation by nonprotein ligands and redox reagents of the two naturally occurring cN-II forms generated by proteolysis were ascertained by combined biochemical and mass spectrometric investigations. These experiments indicated that the C-terminal region of cN-II contains a cysteine prone to form a disulfide bond, thereby inactivating the enzyme. Proteolysis events that generate the observed cN-II forms, eliminating this C-terminal portion, may prevent loss of enzymic activity and can be regarded as regulatory phenomena.


Assuntos
5'-Nucleotidase/metabolismo , Citosol/enzimologia , 5'-Nucleotidase/química , 5'-Nucleotidase/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Bovinos , Primers do DNA , Eletroforese em Gel de Poliacrilamida , Hidrólise , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Homologia de Sequência de Aminoácidos
19.
J Biochem Mol Toxicol ; 17(6): 329-37, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14708088

RESUMO

The combination of 2'-deoxyadenosine and 2'-deoxycoformycin is toxic for the human colon carcinoma cell line LoVo. In this study we investigated the mode of action of the two compounds and have found that they promote apoptosis. The examination by fluorescence microscopy of the cells treated with the combination revealed the characteristic morphology associated with apoptosis, such as chromatin condensation and nuclear fragmentation. The occurrence of apoptosis was also confirmed by the release of cytochrome c and the proteolytic processing of procaspase-3 in cells subjected to the treatment. To exert its triggering action on the apoptotic process, 2'-deoxyadenosine enters the cells through an equilibrative nitrobenzyl-thioinosine-insensitive carrier, and must be phosphorylated by intracellular kinases. Indeed, in the present work we demonstrate by analysis of the intracellular metabolic derivatives of 2'-deoxyadenosine that, as suggested by our previous findings, in the incubation performed with 2'-deoxyadenosine and 2'-deoxycoformycin, an appreciable amount of dATP was formed. Conversely, when also an inhibitor of adenosine kinase was added to the incubation mixture, dATP was not formed, and the toxic and apoptotic effect of the combination was completely reverted.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias do Colo/patologia , Desoxiadenosinas/farmacologia , Tioinosina/análogos & derivados , Antineoplásicos/farmacologia , Caspases/química , Caspases/genética , Caspases/metabolismo , Adesão Celular/efeitos dos fármacos , Contagem de Células , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Citocromos c/metabolismo , Precursores Enzimáticos/química , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Citometria de Fluxo , Humanos , Microscopia de Fluorescência , Pentostatina/farmacologia , Tioinosina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA