Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 32(11): 108151, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32937140

RESUMO

Cyclin D1 encodes the regulatory subunit of a holoenzyme that phosphorylates RB and functions as a collaborative nuclear oncogene. The serine threonine kinase Akt plays a pivotal role in the control of cellular metabolism, survival, and mitogenic signaling. Herein, Akt1-mediated phosphorylation of downstream substrates in the mammary gland is reduced by cyclin D1 genetic deletion and is induced by mammary-gland-targeted cyclin D1 overexpression. Cyclin D1 is associated with Akt1 and augments the rate of onset and maximal cellular Akt1 activity induced by mitogens. Cyclin D1 is identified in a cytoplasmic-membrane-associated pool, and cytoplasmic-membrane-localized cyclin D1-but not nuclear-localized cyclin D1-recapitulates Akt1 transcriptional function. These studies identify a novel extranuclear function of cyclin D1 to enhance proliferative functions via augmenting Akt1 phosphorylation at Ser473.


Assuntos
Ciclina D1/metabolismo , Mitógenos/metabolismo , Fosfosserina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Células 3T3 , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Membrana Celular/metabolismo , Ciclina D1/genética , Quinases Ciclina-Dependentes/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Células MCF-7 , Glândulas Mamárias Animais/metabolismo , Camundongos , Camundongos Transgênicos , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/genética , Transcrição Gênica
2.
Oncogenesis ; 9(9): 83, 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948740

RESUMO

The essential G1-cyclin, CCND1, is a collaborative nuclear oncogene that is frequently overexpressed in cancer. D-type cyclins bind and activate CDK4 and CDK6 thereby contributing to G1-S cell-cycle progression. In addition to the nucleus, herein cyclin D1 was also located in the cytoplasmic membrane. In contrast with the nuclear-localized form of cyclin D1 (cyclin D1NL), the cytoplasmic membrane-localized form of cyclin D1 (cyclin D1MEM) induced transwell migration and the velocity of cellular migration. The cyclin D1MEM was sufficient to induce G1-S cell-cycle progression, cellular proliferation, and colony formation. The cyclin D1MEM was sufficient to induce phosphorylation of the serine threonine kinase Akt (Ser473) and augmented extranuclear localized 17ß-estradiol dendrimer conjugate (EDC)-mediated phosphorylation of Akt (Ser473). These studies suggest distinct subcellular compartments of cell cycle proteins may convey distinct functions.

3.
Oncotarget ; 8(47): 81754-81775, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-29137220

RESUMO

The cyclin D1 gene encodes the regulatory subunit of a holoenzyme that drives cell autonomous cell cycle progression and proliferation. Herein we show cyclin D1 abundance is increased >30-fold in the stromal fibroblasts of patients with invasive breast cancer, associated with poor outcome. Cyclin D1 transformed hTERT human fibroblast to a cancer-associated fibroblast phenotype. Stromal fibroblast expression of cyclin D1 (cyclin D1Stroma) in vivo, enhanced breast epithelial cancer tumor growth, restrained apoptosis, and increased autophagy. Cyclin D1Stroma had profound effects on the breast tumor microenvironment increasing the recruitment of F4/80+ and CD11b+ macrophages and increasing angiogenesis. Cyclin D1Stroma induced secretion of factors that promoted expansion of stem cells (breast stem-like cells, embryonic stem cells and bone marrow derived stem cells). Cyclin D1Stroma resulted in increased secretion of proinflammatory cytokines (CCL2, CCL7, CCL11, CXCL1, CXCL5, CXCL9, CXCL12), CSF (CSF1, GM-CSF1) and osteopontin (OPN) (30-fold). OPN was induced by cyclin D1 in fibroblasts, breast epithelial cells and in the murine transgenic mammary gland and OPN was sufficient to induce stem cell expansion. These results demonstrate that cyclin D1Stroma drives tumor microenvironment heterocellular signaling, promoting several key hallmarks of cancer.

4.
Cancer Res ; 77(13): 3391-3405, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28522753

RESUMO

Autophagy activated after DNA damage or other stresses mitigates cellular damage by removing damaged proteins, lipids, and organelles. Activation of the master metabolic kinase AMPK enhances autophagy. Here we report that cyclin D1 restrains autophagy by modulating the activation of AMPK. In cell models of human breast cancer or in a cyclin D1-deficient model, we observed a cyclin D1-mediated reduction in AMPK activation. Mechanistic investigations showed that cyclin D1 inhibited mitochondrial function, promoted glycolysis, and reduced activation of AMPK (pT172), possibly through a mechanism that involves cyclin D1-Cdk4/Cdk6 phosphorylation of LKB1. Our findings suggest how AMPK activation by cyclin D1 may couple cell proliferation to energy homeostasis. Cancer Res; 77(13); 3391-405. ©2017 AACR.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Neoplasias da Mama/genética , Ciclina D1/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Células 3T3 , Quinases Proteína-Quinases Ativadas por AMP , Animais , Autofagia/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Transdução de Sinais , Transfecção
5.
Mol Endocrinol ; 29(2): 200-12, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25545407

RESUMO

Hypogonadatropic hypogonadism (HH) can be acquired through energy restriction or may be inherited as congenital hypogonadotropic hypogonadism and its anosmia-associated form, Kallmann's syndrome. Congenital hypogonadotropic hypogonadism is associated with mutations in a group of genes that impact fibroblast growth factor 8 (FGF8) function. The Sirt1 gene encodes a nicotinamide adenine dinucleotide-dependent histone deacetylase that links intracellular metabolic stress to gene expression. Herein Sirt1(-/-) mice are shown to have HH due to failed GnRH neuronal migration. Sirtuin-1 (Sirt1) catalytic function induces GnRH neuronal migration via binding and deacetylating cortactin. Sirt1 colocalized with cortactin in GnRH neurons in vitro. Sirt1 colocalization with cortactin was regulated in an FGF8/fibroblast growth factor receptor-1 dependent manner. The profound effect of Sirt1 on the hormonal status of Sirt1(-/-) mice, mediated via defective GnRH neuronal migration, links energy metabolism directly to the hypogonadal state. Sirt1-cortactin may serve as the distal transducer of neuronal migration mediated by the FGF8 synexpression group of genes that govern HH.


Assuntos
Movimento Celular , Hormônio Liberador de Gonadotropina/metabolismo , Hipogonadismo/patologia , Neurônios/patologia , Sirtuína 1/deficiência , Acetilação , Animais , Biocatálise , Cortactina/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Camundongos , Modelos Biológicos , Ligação Proteica , Transporte Proteico , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Transdução de Sinais , Sirtuína 1/metabolismo , Frações Subcelulares/metabolismo
6.
Am J Pathol ; 185(1): 266-79, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25529796

RESUMO

Prostatic intraepithelial neoplasia is a precursor to prostate cancer. Herein, deletion of the NAD(+)-dependent histone deacetylase Sirt1 induced histological features of prostatic intraepithelial neoplasia at 7 months of age; these features were associated with increased cell proliferation and enhanced mitophagy. In human prostate cancer, lower Sirt1 expression in the luminal epithelium was associated with poor prognosis. Genetic deletion of Sirt1 increased mitochondrial superoxide dismutase 2 (Sod2) acetylation of lysine residue 68, thereby enhancing reactive oxygen species (ROS) production and reducing SOD2 activity. The PARK2 gene, which has several features of a tumor suppressor, encodes an E3 ubiquitin ligase that participates in removal of damaged mitochondria via mitophagy. Increased ROS in Sirt1(-/-) cells enhanced the recruitment of Park2 to the mitochondria, inducing mitophagy. Sirt1 restoration inhibited PARK2 translocation and ROS production requiring the Sirt1 catalytic domain. Thus, the NAD(+)-dependent inhibition of SOD2 activity and ROS by SIRT1 provides a gatekeeper function to reduce PARK2-mediated mitophagy and aberrant cell survival.


Assuntos
Regulação Neoplásica da Expressão Gênica , Mitocôndrias/metabolismo , Mitofagia , Neoplasia Prostática Intraepitelial/metabolismo , Sirtuína 1/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Células 3T3 , Animais , Sobrevivência Celular , Genótipo , Histona Desacetilases/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Estresse Oxidativo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Transporte Proteico , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
7.
Cell Cycle ; 13(8): 1256-64, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24621503

RESUMO

CAPER is an estrogen receptor (ER) co-activator that was recently shown to be involved in human breast cancer pathogenesis. Indeed, we reported increased expression of CAPER in human breast cancer specimens. We demonstrated that CAPER was undetectable or expressed at relatively low levels in normal breast tissue and assumed a cytoplasmic distribution. In contrast, CAPER was expressed at higher levels in ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC) specimens, where it assumed a predominantly nuclear distribution. However, the functional role of CAPER in human breast cancer initiation and progression remained unknown. Here, we used a lentiviral-mediated gene silencing approach to reduce the expression of CAPER in the ER-positive human breast cancer cell line MCF-7. The proliferation and tumorigenicity of MCF-7 cells stably expressing control or human CAPER shRNAs was then determined via both in vitro and in vivo experiments. Knockdown of CAPER expression significantly reduced the proliferation of MCF-7 cells in vitro. Importantly, nude mice injected with MCF-7 cells harboring CAPER shRNAs developed smaller tumors than mice injected with MCF-7 cells harboring control shRNAs. Mechanistically, tumors derived from mice injected with MCF-7 cells harboring CAPER shRNAs displayed reduced expression of the cell cycle regulators PCNA, MCM7, and cyclin D1, and the protein synthesis marker 4EBP1. In conclusion, knockdown of CAPER expression markedly reduced human breast cancer cell proliferation in both in vitro and in vivo settings. Mechanistically, knockdown of CAPER abrogated the activity of proliferative and protein synthesis pathways.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Neoplasias da Mama/patologia , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Progressão da Doença , Feminino , Técnicas de Silenciamento de Genes , Humanos , Células MCF-7 , Camundongos Nus , Transplante de Neoplasias , Proteínas Nucleares/genética , Fosforilação , Antígeno Nuclear de Célula em Proliferação/metabolismo , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas c-jun/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética
8.
Cell Cycle ; 11(19): 3599-610, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22935696

RESUMO

Here, we investigated the compartment-specific role of cell cycle arrest and senescence in breast cancer tumor growth. For this purpose, we generated a number of hTERT-immortalized senescent fibroblast cell lines overexpressing CDK inhibitors, such as p16(INK4A), p19(ARF) or p21(WAF1/CIP1). Interestingly, all these senescent fibroblast cell lines showed evidence of increased susceptibility toward the induction of autophagy (either at baseline or after starvation), as well as significant mitochondrial dysfunction. Most importantly, these senescent fibroblasts also dramatically promoted tumor growth (up to ~2-fold), without any comparable increases in tumor angiogenesis. Conversely, we generated human breast cancer cells (MDA-MB-231 cells) overexpressing CDK inhibitors, namely p16(INK4A) or p21(WAF1/CIP1). Senescent MDA-MB-231 cells also showed increased expression of markers of cell cycle arrest and autophagy, including ß-galactosidase, as predicted. Senescent MDA-MB-231 cells had retarded tumor growth, with up to a near 2-fold reduction in tumor volume. Thus, the effects of CDK inhibitors are compartment-specific and are related to their metabolic effects, which results in the induction of autophagy and mitochondrial dysfunction. Finally, induction of cell cycle arrest with specific inhibitors (PD0332991) or cellular stressors [hydrogen peroxide (H(2)O(2)) or starvation] indicated that the onset of autophagy and senescence are inextricably linked biological processes. The compartment-specific induction of senescence (and hence autophagy) may be a new therapeutic target that could be exploited for the successful treatment of human breast cancer patients.


Assuntos
Autofagia , Neoplasias da Mama/irrigação sanguínea , Senescência Celular , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Fibroblastos/patologia , Neovascularização Patológica/patologia , Comunicação Parácrina , Animais , Autofagia/efeitos dos fármacos , Neoplasias da Mama/patologia , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p19/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Ácido Láctico/metabolismo , Camundongos , Modelos Biológicos , Comunicação Parácrina/efeitos dos fármacos , Piperazinas/farmacologia , Piridinas/farmacologia
9.
Int J Biochem Cell Biol ; 44(12): 2144-51, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22981632

RESUMO

Cancer stem cells (CSCs) are a small subpopulation of cells within tumors with capabilities of self-renewal, differentiation, and tumorigenicity when transplanted into an animal host. A number of cell surface markers such as CD44, CD24, and CD133 are often used to identify and enrich CSCs. A regulatory network consisting of microRNAs and Wnt/ß-catenin, Notch, and Hedgehog signaling pathways controls CSC properties. The clinical relevance of CSCs has been strengthened by emerging evidence, demonstrating that CSCs are resistant to conventional chemotherapy and radiation treatment and that CSCs are very likely to be the origin of cancer metastasis. CSCs are believed to be an important target for novel anti-cancer drug discovery. Herein we summarize the current understanding of CSCs, with a focus on the role of miRNA and epithelial-mesenchymal transition (EMT), and discuss the clinical application of targeting CSCs for cancer treatment.


Assuntos
Neoplasias/patologia , Células-Tronco Neoplásicas/fisiologia , Animais , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/fisiologia , Metástase Neoplásica , Neoplasias/tratamento farmacológico , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais , Nicho de Células-Tronco
10.
Cell Cycle ; 11(12): 2285-302, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22684298

RESUMO

Senescent fibroblasts are known to promote tumor growth. However, the exact mechanism remains largely unknown. An important clue comes from recent studies linking autophagy with the onset of senescence. Thus, autophagy and senescence may be part of the same physiological process, known as the autophagy-senescence transition (AST). To test this hypothesis, human fibroblasts immortalized with telomerase (hTERT-BJ1) were stably transfected with autophagy genes (BNIP3, CTSB or ATG16L1). Their overexpression was sufficient to induce a constitutive autophagic phenotype, with features of mitophagy, mitochondrial dysfunction and a shift toward aerobic glycolysis, resulting in L-lactate and ketone body production. Autophagic fibroblasts also showed features of senescence, with increased p21(WAF1/CIP1), a CDK inhibitor, cellular hypertrophy and increased ß-galactosidase activity. Thus, we genetically validated the existence of the autophagy-senescence transition. Importantly, autophagic-senescent fibroblasts promoted tumor growth and metastasis, when co-injected with human breast cancer cells, independently of angiogenesis. Autophagic-senescent fibroblasts stimulated mitochondrial metabolism in adjacent cancer cells, when the two cell types were co-cultured, as visualized by MitoTracker staining. In particular, autophagic ATG16L1 fibroblasts, which produced large amounts of ketone bodies (3-hydroxy-butyrate), had the strongest effects and promoted metastasis by up to 11-fold. Conversely, expression of ATG16L1 in epithelial cancer cells inhibited tumor growth, indicating that the effects of autophagy are compartment-specific. Thus, autophagic-senescent fibroblasts metabolically promote tumor growth and metastasis, by paracrine production of high-energy mitochondrial fuels. Our current studies provide genetic support for the importance of "two-compartment tumor metabolism" in driving tumor growth and metastasis via a simple energy transfer mechanism. Finally, ß-galactosidase, a known lysosomal enzyme and biomarker of senescence, was localized to the tumor stroma in human breast cancer tissues, providing in vivo support for our hypothesis. Bioinformatic analysis of genome-wide transcriptional profiles from tumor stroma, isolated from human breast cancers, also validated the onset of an autophagy-senescence transition. Taken together, these studies establish a new functional link between host aging, autophagy, the tumor microenvironment and cancer metabolism.


Assuntos
Autofagia , Senescência Celular , Fibroblastos/metabolismo , Corpos Cetônicos/metabolismo , Proteínas Relacionadas à Autofagia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Catepsina B/genética , Catepsina B/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Técnicas de Cocultura , Feminino , Glicólise , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
11.
Cell Cycle ; 11(12): 2272-84, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22684333

RESUMO

Previous studies have demonstrated that loss of caveolin-1 (Cav-1) in stromal cells drives the activation of the TGF-ß signaling, with increased transcription of TGF-ß target genes, such as connective tissue growth factor (CTGF). In addition, loss of stromal Cav-1 results in the metabolic reprogramming of cancer-associated fibroblasts, with the induction of autophagy and glycolysis. However, it remains unknown if activation of the TGF-ß / CTGF pathway regulates the metabolism of cancer-associated fibroblasts. Therefore, we investigated whether CTGF modulates metabolism in the tumor microenvironment. For this purpose, CTGF was overexpressed in normal human fibroblasts or MDA-MB-231 breast cancer cells. Overexpression of CTGF induces HIF-1α-dependent metabolic alterations, with the induction of autophagy/mitophagy, senescence, and glycolysis. Here, we show that CTGF exerts compartment-specific effects on tumorigenesis, depending on the cell-type. In a xenograft model, CTGF overexpressing fibroblasts promote the growth of co-injected MDA-MB-231 cells, without any increases in angiogenesis. Conversely, CTGF overexpression in MDA-MB-231 cells dramatically inhibits tumor growth in mice. Intriguingly, increased extracellular matrix deposition was seen in tumors with either fibroblast or MDA-MB-231 overexpression of CTGF. Thus, the effects of CTGF expression on tumor formation are independent of its extracellular matrix function, but rather depend on its ability to activate catabolic metabolism. As such, CTGF-mediated induction of autophagy in fibroblasts supports tumor growth via the generation of recycled nutrients, whereas CTGF-mediated autophagy in breast cancer cells suppresses tumor growth, via tumor cell self-digestion. Our studies shed new light on the compartment-specific role of CTGF in mammary tumorigenesis, and provide novel insights into the mechanism(s) generating a lethal tumor microenvironment in patients lacking stromal Cav-1. As loss of Cav-1 is a stromal marker of poor clinical outcome in women with primary breast cancer, dissecting the downstream signaling effects of Cav-1 are important for understanding disease pathogenesis, and identifying novel therapeutic targets.


Assuntos
Autofagia , Senescência Celular , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Fibroblastos/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Caveolina 1/genética , Caveolina 1/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Fator de Crescimento do Tecido Conjuntivo/genética , Feminino , Glicólise , Humanos , Camundongos , Estresse Oxidativo , Células Estromais/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Transplante Heterólogo , Microambiente Tumoral
12.
Cancer Res ; 72(15): 3839-50, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22637726

RESUMO

The roles of the chemokine CCL5 and its receptor CCR5 in breast cancer progression remain unclear. Here, we conducted microarray analysis on 2,254 human breast cancer specimens and found increased expression of CCL5 and its receptor CCR5, but not CCR3, in the basal and HER-2 genetic subtypes. The subpopulation of human breast cancer cell lines found to express CCR5 displayed a functional response to CCL5. In addition, oncogene transformation induced CCR5 expression, and the subpopulation of cells that expressed functional CCR5 also displayed increased invasiveness. The CCR5 antagonists maraviroc or vicriviroc, developed to block CCR5 HIV coreceptor function, reduced in vitro invasion of basal breast cancer cells without affecting cell proliferation or viability, and maraviroc decreased pulmonary metastasis in a preclinical mouse model of breast cancer. Taken together, our findings provide evidence for the key role of CCL5/CCR5 in the invasiveness of basal breast cancer cells and suggest that CCR5 antagonists may be used as an adjuvant therapy to reduce the risk of metastasis in patients with the basal breast cancer subtype.


Assuntos
Neoplasias da Mama/patologia , Neoplasias da Mama/prevenção & controle , Antagonistas dos Receptores CCR5 , Cicloexanos/farmacologia , Neoplasia de Células Basais/patologia , Neoplasia de Células Basais/prevenção & controle , Piperazinas/farmacologia , Pirimidinas/farmacologia , Triazóis/farmacologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/genética , Quimiocina CCL5/fisiologia , Cicloexanos/uso terapêutico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Maraviroc , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Metástase Neoplásica , Neoplasia de Células Basais/genética , Piperazinas/uso terapêutico , Pirimidinas/uso terapêutico , Receptores CCR5/genética , Receptores CCR5/metabolismo , Triazóis/uso terapêutico , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Cell Cycle ; 10(23): 4065-73, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22129993

RESUMO

Increasing chronological age is the most significant risk factor for cancer. Recently, we proposed a new paradigm for understanding the role of the aging and the tumor microenvironment in cancer onset. In this model, cancer cells induce oxidative stress in adjacent stromal fibroblasts. This, in turn, causes several changes in the phenotype of the fibroblast including mitochondrial dysfunction, hydrogen peroxide production, and aerobic glycolysis, resulting in high levels of L-lactate production. L-lactate is then transferred from these glycolytic fibroblasts to adjacent epithelial cancer cells and used as "fuel" for oxidative mitochondrial metabolism.  Here, we created a new pre-clinical model system to directly test this hypothesis experimentally. To synthetically generate glycolytic fibroblasts, we genetically-induced mitochondrial dysfunction by knocking down TFAM using an sh-RNA approach.  TFAM is mitochondrial transcription factor A, which is important in functionally maintaining the mitochondrial respiratory chain. Interestingly, TFAM-deficient fibroblasts showed evidence of mitochondrial dysfunction and oxidative stress, with the loss of certain mitochondrial respiratory chain components, and the over-production of hydrogen peroxide and L-lactate. Thus, TFAM-deficient fibroblasts underwent metabolic reprogramming towards aerobic glycolysis.  Most importantly, TFAM-deficient fibroblasts significantly promoted tumor growth, as assayed using a human breast cancer (MDA-MB-231) xenograft model. These increases in glycolytic fibroblast driven tumor growth were independent of tumor angiogenesis. Mechanistically, TFAM-deficient fibroblasts increased the mitochondrial activity of adjacent epithelial cancer cells in a co-culture system, as seen using MitoTracker. Finally, TFAM-deficient fibroblasts also showed a loss of caveolin-1 (Cav-1), a known breast cancer stromal biomarker. Loss of stromal fibroblast Cav-1 is associated with early tumor recurrence, metastasis, and treatment failure, resulting in poor clinical outcome in breast cancer patients. Thus, this new experimental model system, employing glycolytic fibroblasts, may be highly clinically relevant. These studies also have implications for understanding the role of hydrogen peroxide production in oxidative damage and "host cell aging," in providing a permissive metabolic microenvironment for promoting and sustaining tumor growth.


Assuntos
Neoplasias da Mama/patologia , Senescência Celular , Ácido Láctico/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Animais , Neoplasias da Mama/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Linhagem Celular Tumoral , Técnicas de Cocultura , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Técnicas de Silenciamento de Genes , Glicólise , Humanos , Peróxido de Hidrogênio/metabolismo , Neoplasias Mamárias Experimentais , Camundongos , Camundongos Nus , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Mol Biol Cell ; 19(4): 1378-90, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18216279

RESUMO

The spread of metastatic tumors to different organs is associated with poor prognosis. The metastatic process requires migration and cellular invasion. The protooncogene c-jun encodes the founding member of the activator protein-1 family and is required for cellular proliferation and DNA synthesis in response to oncogenic signals and plays an essential role in chemical carcinogenesis. The role of c-Jun in cellular invasion remains to be defined. Genetic deletion of c-Jun in transgenic mice is embryonic lethal; therefore, transgenic mice encoding a c-Jun gene flanked by LoxP sites (c-jun(f/f)) were used. c-jun gene deletion reduced c-Src expression, hyperactivated ROCK II signaling, and reduced cellular polarity, migration, and invasiveness. c-Jun increased c-Src mRNA abundance and c-Src promoter activity involving an AP-1 site in the c-Src promoter. Transduction of c-jun(-/-) cells with either c-Jun or c-Src retroviral expression systems restored the defective cellular migration of c-jun(-/-) cells. As c-Src is a critical component of pathways regulating proliferation, survival, and metastasis, the induction of c-Src abundance, by c-Jun, provides a novel mechanism of cooperative signaling in cellular invasion.


Assuntos
Movimento Celular/genética , Movimento Celular/fisiologia , Genes jun , Genes src , Quinases Associadas a rho/metabolismo , Células 3T3 , Actinas/metabolismo , Animais , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Adesões Focais/genética , Adesões Focais/fisiologia , Deleção de Genes , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/metabolismo , Camundongos , Camundongos Transgênicos , Invasividade Neoplásica/genética , Invasividade Neoplásica/fisiopatologia , Paxilina/química , Paxilina/metabolismo , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Quinases Associadas a rho/antagonistas & inibidores
15.
Mol Cell Biol ; 26(21): 8122-35, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16923962

RESUMO

The NAD-dependent histone deacetylase Sir2 plays a key role in connecting cellular metabolism with gene silencing and aging. The androgen receptor (AR) is a ligand-regulated modular nuclear receptor governing prostate cancer cellular proliferation, differentiation, and apoptosis in response to androgens, including dihydrotestosterone (DHT). Here, SIRT1 antagonists induce endogenous AR expression and enhance DHT-mediated AR expression. SIRT1 binds and deacetylates the AR at a conserved lysine motif. Human SIRT1 (hSIRT1) repression of DHT-induced AR signaling requires the NAD-dependent catalytic function of hSIRT1 and the AR lysine residues deacetylated by SIRT1. SIRT1 inhibited coactivator-induced interactions between the AR amino and carboxyl termini. DHT-induced prostate cancer cellular contact-independent growth is also blocked by SIRT1, providing a direct functional link between the AR, which is a critical determinant of progression of human prostate cancer, and the sirtuins.


Assuntos
Di-Hidrotestosterona/metabolismo , Regulação da Expressão Gênica , Neoplasias da Próstata , Receptores Androgênicos/metabolismo , Sirtuínas/metabolismo , Acetilação , Sequência de Aminoácidos , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Proliferação de Células , Genes Reporter , Histona Acetiltransferases/metabolismo , Humanos , Lisina/metabolismo , Masculino , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/genética , Peptídeos/metabolismo , Receptores Androgênicos/genética , Transdução de Sinais/fisiologia , Sirtuína 1 , Sirtuínas/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Fatores de Transcrição de p300-CBP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA