Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 12: 981009, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003785

RESUMO

Integrin α11ß1 is a collagen-binding integrin that is needed to induce and maintain the myofibroblast phenotype in fibrotic tissues and during wound healing. The expression of the α11 is upregulated in cancer-associated fibroblasts (CAFs) in various human neoplasms. We investigated α11 expression in human cutaneous squamous cell carcinoma (cSCC) and in benign and premalignant human skin lesions and monitored its effects on cSCC development by subjecting α11-knockout (Itga11-/- ) mice to the DMBA/TPA skin carcinogenesis protocol. α11-deficient mice showed significantly decreased tumor cell proliferation, leading to delayed tumor development and reduced tumor burden. Integrin α11 expression was significantly upregulated in the desmoplastic tumor stroma of human and mouse cSCCs, and the highest α11 expression was detected in high-grade tumors. Our results point to a reduced ability of α11-deficient stromal cells to differentiate into matrix-producing and tumor-promoting CAFs and suggest that this is one causative mechanism underlying the observed decreased tumor growth. An unexpected finding in our study was that, despite reduced CAF activation, the α11-deficient skin tumors were characterized by the presence of thick and regularly aligned collagen bundles. This finding was attributed to a higher expression of TGFß1 and collagen crosslinking lysyl oxidases in the Itga11-/- tumor stroma. In summary, our data suggest that α11ß1 operates in a complex interactive tumor environment to regulate ECM synthesis and collagen organization and thus foster cSCC growth. Further studies with advanced experimental models are still needed to define the exact roles and molecular mechanisms of stromal α11ß1 in skin tumorigenesis.

2.
J Cell Physiol ; 233(5): 3784-3793, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28926092

RESUMO

White mature adipocytes (MAs) are plastic cells able to reversibly transdifferentiate toward fibroblast-like cells maintaining stem cell gene signatures. The main morphologic aspect of this transdifferentiation process, called liposecretion, is the secretion of large lipid droplets and the development of organelles necessary for exocrine secretion. There is a considerable interest in the adipocyte plastic properties involving liposecretion process, but the molecular details are incompletely explored. This review analyzes the gene expression of MAs isolated from human subcutaneous fat tissue with respect to bone marrow (BM)-derived mesenchymal stem cells (MSC) focusing on gene regulatory pathways involved into cellular morphology changes, cellular proliferation and transports of molecules through the membrane, suggesting potential ways to guide liposecretion. In particular, Wnt, MAPK/ERK, and AKT pathways were accurately described, studying up- and down-stream molecules involved. Moreover, adipogenic extra- and intra-cellular interactions were analyzed studying the role of CDH2, CDH11, ITGA5, E-Syt1, PAI-1, IGF1, and INHBB genes. Additionally, PLIN1 and PLIN2 could be key-genes of liposecretion process regulating molecules transport through the membrane. All together data demonstrated that liposecretion is regulated through a complex molecular networks that are able to respond to microenvironment signals, cytokines, and growth factors. Autocrine as well as external signaling molecules might activate liposecretion affecting adipocytes physiology.


Assuntos
Adipócitos/citologia , Adipogenia/genética , Diferenciação Celular/genética , Células-Tronco Mesenquimais/citologia , Animais , Células da Medula Óssea/citologia , Proliferação de Células/genética , Humanos
3.
Neoplasia ; 18(7): 436-46, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27435926

RESUMO

Vascular endothelial growth factor D (VEGF-D) promotes the lymph node metastasis of cancer by inducing the growth of lymphatic vasculature, but its specific roles in tumorigenesis have not been elucidated. We monitored the effects of VEGF-D in cutaneous squamous cell carcinoma (cSCC) by subjecting transgenic mice overexpressing VEGF-D in the skin (K14-mVEGF-D) and VEGF-D knockout mice to a chemical skin carcinogenesis protocol involving 7,12-dimethylbenz[a]anthracene and 12-O-tetradecanoylphorbol-13-acetate treatments. In K14-mVEGF-D mice, tumor lymphangiogenesis was significantly increased and the frequency of lymph node metastasis was elevated in comparison with controls. Most notably, the papillomas regressed more often in K14-mVEGF-D mice than in littermate controls, resulting in a delay in tumor incidence and a remarkable reduction in the total tumor number. Skin tumor growth and metastasis were not obviously affected in the absence of VEGF-D; however, the knockout mice showed a trend for reduced lymphangiogenesis in skin tumors and in the untreated skin. Interestingly, K14-mVEGF-D mice showed an altered immune response in skin tumors. This consisted of the reduced accumulation of macrophages, mast cells, and CD4(+) T-cells and an increase of cytotoxic CD8(+) T-cells. Cytokine profiling by flow cytometry and quantitative real time PCR revealed that elevated VEGF-D expression results in an attenuated Th2 response and promotes M1/Th1 and Th17 polarization in the early stage of skin carcinogenesis, leading to an anti-tumoral immune environment and the regression of primary tumors. Our data suggest that VEGF-D may be beneficial in early-stage tumors since it suppresses the pro-tumorigenic inflammation, while at later stages VEGF-D-induced tumor lymphatics provide a route for metastasis.


Assuntos
Carcinógenos/toxicidade , Carcinoma de Células Escamosas/patologia , Linfonodos/irrigação sanguínea , Linfangiogênese/efeitos dos fármacos , Neoplasias Cutâneas/patologia , Fator D de Crescimento do Endotélio Vascular/metabolismo , 9,10-Dimetil-1,2-benzantraceno/toxicidade , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Carcinoma de Células Escamosas/induzido quimicamente , Citometria de Fluxo , Metástase Linfática , Vasos Linfáticos/patologia , Contagem de Linfócitos , Macrófagos/imunologia , Mastócitos/imunologia , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase , Pele/patologia , Neoplasias Cutâneas/induzido quimicamente , Acetato de Tetradecanoilforbol/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA