Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37461324

RESUMO

Chronic pulmonary infection is a hallmark of cystic fibrosis (CF) and requires continuous antibiotic treatment. In this context, Pseudomonas aeruginosa (Pa) is of special concern since colonizing strains frequently acquire multiple drug resistance (MDR). Bactericidal/permeability-increasing protein (BPI) is a neutrophil-derived, endogenous protein with high bactericidal potency against Gram-negative bacteria. However, a significant range of people with CF (PwCF) produce anti-neutrophil cytoplasmic antibodies against BPI (BPI-ANCA), thereby neutralizing its bactericidal function. In accordance with literature, we describe that 51.0% of a total of 39 PwCF expressed BPI-ANCA. Importantly, an orthologous protein to human BPI (huBPI) derived from the scorpionfish Sebastes schlegelii (scoBPI) completely escaped recognition by these autoantibodies. Moreover, scoBPI exhibited high anti-inflammatory potency towards Pa LPS and was bactericidal against MDR Pa derived from PwCF at nanomolar concentrations. In conclusion, our results highlight the potential of highly active orthologous proteins of huBPI in treatment of MDR Pa infections, especially in the presence of BPI-ANCA.


Cystic fibrosis is a genetic disorder that makes people produce unusually thick and sticky mucus that clogs their lungs and airways. This inevitably leads to recurring bacterial infections, particularly those caused by the Gram-negative bacterium Pseudomonas aeruginosa. Antibiotics are needed to treat these infections. However, over time most bacteria build modes of resistance to these drugs and, once multiple drug-resistant bacteria colonize the lung, very limited treatment options are left. Therefore, new therapeutic approaches are desperately needed. Notably, humans themselves express a highly potent antimicrobial protein called BPI (short for Bactericidal/permeability­increasing protein) that attacks Gram-negative bacteria, including multiple drug-resistant strains of P. aeruginosa. Unfortunately, many people with cystic fibrosis also generate antibodies that bind to BPI and interfere with its antimicrobial function. Faced with this conundrum, Holzinger et al. set out to find BPIs made by other animals which might not be recognized by human antibodies and also display a high potential to attack Gram-negative bacteria. Based on specific selection criteria, Holzinger et al. focused their attention on BPI made by scorpionfish, a type of venomous fish that live near coral reefs. Compared to other BPI proteins they investigated, the one produced by scorpionfish appeared to be the most capable of binding to P. aeruginosa via a prominent surface molecule exclusively found on Gram-negative bacteria. Furthermore, when Holzinger et al. tested whether the antibodies present in people with cystic fibrosis could recognize scorpionfish BPI, they found that the BPI completely evaded detection. The scorpionfish BPI was also able to pre-eminently attack P. aeruginosa. In fact, it was even able to potently kill drug-resistant strains of the bacteria that had been isolated from people with cystic fibrosis. This study suggests that scorpionfish BPI could serve as an alternative to antibiotics in people with cystic fibrosis that have otherwise untreatable bacterial infections. Drug-resistant bacteria which cause life threatening conditions are on the rise across the globe, and scorpionfish BPI could be a potential candidate to treat affected patients. In the future, animal experiments will be needed to explore how highly potent non-human BPIs function in whole living organisms.


Assuntos
Fibrose Cística , Humanos , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Anticorpos Anticitoplasma de Neutrófilos/metabolismo , Autoanticorpos/metabolismo , Proteínas Sanguíneas , Fibrose Cística/complicações , Fibrose Cística/microbiologia , Proteínas de Membrana/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas de Peixes/farmacologia , Proteínas de Peixes/uso terapêutico , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/metabolismo
2.
Biotechniques ; 74(1): 23-29, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36597257

RESUMO

DNA extraction from frozen blood clots is challenging. Here, the authors applied QIAGEN Clotspin Baskets and the Gentra Puregene Blood Kit for DNA extraction to cellular fraction of 5.5 ml whole blood without anticoagulating additives. The amount and quality of extracted DNA were assessed via spectrophotometer and gel electrophoresis. Results from array-based genotyping were analyzed. All steps were compared with DNA isolated from anticoagulated blood samples from a separate study. The quality and concentration of DNA extracted from clotted blood were comparable to those of DNA extracted from anticoagulated blood. DNA yield was on average 27 µg per ml clotted blood, with an average purity of 1.87 (A260/A280). Genotyping quality was similar for both DNA sources (call rate: 99.56% from clotted vs 99.49% from anticoagulated blood).


Assuntos
DNA , Trombose , Humanos , Genótipo , DNA/genética , Eletroforese , Congelamento
3.
Artigo em Inglês | MEDLINE | ID: mdl-36554876

RESUMO

SARS-CoV-2 seroprevalence was reported as substantially increased in medical personnel and decreased in smokers after the first wave in spring 2020, including in our population-based Tirschenreuth Study (TiKoCo). However, it is unclear whether these associations were limited to the early pandemic and whether the decrease in smokers was due to reduced infection or antibody response. We evaluated the association of occupation and smoking with period-specific seropositivity: for the first wave until July 2020 (baseline, BL), the low infection period in summer (follow-up 1, FU1, November 2020), and the second/third wave (FU2, April 2021). We measured binding antibodies directed to SARS-CoV-2 nucleoprotein (N), viral spike protein (S), and neutralizing antibodies at BL, FU1, and FU2. Previous infection, vaccination, smoking, and occupation were assessed by questionnaires. The 4181 participants (3513/3374 at FU1/FU2) included 6.5% medical personnel and 20.4% current smokers. At all three timepoints, new seropositivity was higher in medical personnel with ORs = 1.99 (95%-CI = 1.36-2.93), 1.41 (0.29-6.80), and 3.17 (1.92-5.24) at BL, FU1, and FU2, respectively, and nearly halved among current smokers with ORs = 0.47 (95%-CI = 0.33-0.66), 0.40 (0.09-1.81), and 0.56 (0.33-0.94). Current smokers compared to never-smokers had similar antibody levels after infection or vaccination and reduced odds of a positive SARS-CoV-2 result among tested. Our data suggest that decreased seroprevalence among smokers results from fewer infections rather than reduced antibody response. The persistently higher infection risk of medical staff across infection waves, despite improved means of protection over time, underscores the burden for health care personnel.


Assuntos
COVID-19 , Fumantes , Humanos , SARS-CoV-2 , Estudos Soroepidemiológicos , COVID-19/epidemiologia , Pessoal de Saúde , Anticorpos Neutralizantes , Estudos Longitudinais , Anticorpos Antivirais
4.
Vaccines (Basel) ; 9(6)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208059

RESUMO

The delivery of HIV-1 envelope (Env) trimer-based immunogens on the surface of nanoparticles holds promise to promote immunogenicity with the aim of inducing a potent, durable and broad neutralizing antibody (bnAb) response. Towards that goal, we examined the covalent conjugation of Env to 100 nm and 200 nm silica nanoparticles (SiNPs) to optimize conjugation density and attachment stability. Env was redesigned to enable site-specific cysteine-mediated covalent conjugation while maintaining its structural integrity and antigenicity. Env was anchored to different sized SiNPs with a calculated spacing of 15 nm between adjacent trimers. Both particle sizes exhibited high in vitro stability over a seven-day period. After attachment, 100 nm particles showed better colloidal stability compared to 200 nm particles. Importantly, the antigenic profile of Env was not impaired by surface attachment, indicating that the quaternary structure was maintained. In vitro Env uptake by dendritic cells was significantly enhanced when Env was delivered on the surface of nanoparticles compared to soluble Env. Furthermore, multivalent Env displayed efficiently activated B cells even at Env concentrations in the low nanomolar range. In mice, antibody responses to nanoparticle-coupled Env were stronger compared to the free protein and had equivalent effects at lower doses and without adjuvant.

5.
Viruses ; 13(6)2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200766

RESUMO

SARS-CoV-2 infection fatality ratios (IFR) remain controversially discussed with implications for political measures. The German county of Tirschenreuth suffered a severe SARS-CoV-2 outbreak in spring 2020, with particularly high case fatality ratio (CFR). To estimate seroprevalence, underreported infections, and IFR for the Tirschenreuth population aged ≥14 years in June/July 2020, we conducted a population-based study including home visits for the elderly, and analyzed 4203 participants for SARS-CoV-2 antibodies via three antibody tests. Latent class analysis yielded 8.6% standardized county-wide seroprevalence, a factor of underreported infections of 5.0, and 2.5% overall IFR. Seroprevalence was two-fold higher among medical workers and one third among current smokers with similar proportions of registered infections. While seroprevalence did not show an age-trend, the factor of underreported infections was 12.2 in the young versus 1.7 for ≥85-year-old. Age-specific IFRs were <0.5% below 60 years of age, 1.0% for age 60-69, and 13.2% for age 70+. Senior care homes accounted for 45% of COVID-19-related deaths, reflected by an IFR of 7.5% among individuals aged 70+ and an overall IFR of 1.4% when excluding senior care home residents from our computation. Our data underscore senior care home infections as key determinant of IFR additionally to age, insufficient targeted testing in the young, and the need for further investigations on behavioral or molecular causes of the fewer infections among current smokers.


Assuntos
Anticorpos Antivirais/sangue , COVID-19/epidemiologia , COVID-19/mortalidade , Vigilância da População/métodos , SARS-CoV-2/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/sangue , COVID-19/imunologia , Feminino , Alemanha/epidemiologia , Humanos , Análise de Classes Latentes , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Estações do Ano , Estudos Soroepidemiológicos , Inquéritos e Questionários , Adulto Jovem
6.
Vaccines (Basel) ; 9(5)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925446

RESUMO

The response of the adaptive immune system is augmented by multimeric presentation of a specific antigen, resembling viral particles. Several vaccines have been designed based on natural or designed protein scaffolds, which exhibited a potent adaptive immune response to antigens; however, antibodies are also generated against the scaffold, which may impair subsequent vaccination. In order to compare polypeptide scaffolds of different size and oligomerization state with respect to their efficiency, including anti-scaffold immunity, we compared several strategies of presentation of the RBD domain of the SARS-CoV-2 spike protein, an antigen aiming to generate neutralizing antibodies. A comparison of several genetic fusions of RBD to different nanoscaffolding domains (foldon, ferritin, lumazine synthase, and ß-annulus peptide) delivered as DNA plasmids demonstrated a strongly augmented immune response, with high titers of neutralizing antibodies and a robust T-cell response in mice. Antibody titers and virus neutralization were most potently enhanced by fusion to the small ß-annulus peptide scaffold, which itself triggered a minimal response in contrast to larger scaffolds. The ß-annulus fused RBD protein increased residence in lymph nodes and triggered the most potent viral neutralization in immunization by a recombinant protein. Results of the study support the use of a nanoscaffolding platform using the ß-annulus peptide for vaccine design.

7.
Int J Infect Dis ; 103: 624-627, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33412272

RESUMO

A 21-year-old woman was hospitalized due to coronavirus disease 2019 (COVID-19)-associated respiratory and hepatic impairment concomitant with severe hemolytic anemia. Upon diagnosis of secondary hemophagocytic lymphohistiocytosis, immunosuppression with anakinra and steroids was started, leading to a hepatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and viremia. Subsequent liver biopsy revealed virus particles in hepatocytes by electron microscopy and SARS-CoV-2 virus could be isolated and cultured. Immunosuppression was stopped and convalescent donor plasma given. In the differential diagnosis, an acute crisis of Wilson's disease was raised by laboratory and genetic testing. This case highlights the complexity of balancing immunosuppression to control hyperinflammation versus systemic SARS-CoV-2 dissemination.


Assuntos
COVID-19/complicações , Degeneração Hepatolenticular/diagnóstico , Fígado/virologia , Linfo-Histiocitose Hemofagocítica/etiologia , SARS-CoV-2 , Diagnóstico Diferencial , Feminino , Humanos , Terapia de Imunossupressão , Linfo-Histiocitose Hemofagocítica/diagnóstico , Adulto Jovem
8.
Eur J Pharm Biopharm ; 156: 1-10, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32860903

RESUMO

Poly (lactic-co-glycolic acid) (PLGA) in situ-forming implants are well-established drug delivery systems for controlled drug release over weeks up to months. To prevent initial burst release, which is still a major issue associated with PLGA-based implants, drugs attached to particulate carriers have been encapsulated. Unfortunately, former studies only investigated the resulting release of the soluble drugs and hence missed the potential offered by particulate drug release. In this study, we developed a system capable of releasing functional drug-carrying particles over a prolonged time. First, we evaluated the feasibility of our approach by encapsulating silica particles of different sizes (500 nm and 1 µm) and surface properties (OH or NH2 groups) into in situ-forming PLGA implants. In this way, we achieved sustained release of particles over periods ranging from 30 to 70 days. OH-carrying particles were released much more quickly when compared to NH2-modified particles. We demonstrated that the underlying release mechanisms involve size-dependent diffusion and polymer-particle interactions. Second, particles that carried covalently-attached ovalbumin (OVA) on their surfaces were incorporated into the implant. We demonstrated that OVA was released in association with the particles as functional entities over a period of 30 days. The released particle-drug conjugates maintained their colloidal stability and were efficiently taken up by antigen presenting cells. This system consisting of particles incorporated into PLGA-based in situ-forming implants offers the dual advantage of sustained and particulate release of drugs as a functional unit and has potential for future use in many applications, particularly in single-dose vaccines.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Implantes de Medicamento/farmacocinética , Liberação Controlada de Fármacos , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacocinética , Dióxido de Silício/farmacocinética , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/farmacocinética , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/síntese química , Portadores de Fármacos/farmacocinética , Implantes de Medicamento/administração & dosagem , Implantes de Medicamento/síntese química , Liberação Controlada de Fármacos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/administração & dosagem , Ovalbumina/síntese química , Ovalbumina/farmacocinética , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/síntese química , Dióxido de Silício/administração & dosagem , Dióxido de Silício/síntese química
9.
Front Immunol ; 10: 717, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31105688

RESUMO

Background: A better understanding of the parameters influencing vaccine-induced IgG recognition of individual antigenic regions and their variants within the HIV Envelope protein (Env) can help to improve design of preventive HIV vaccines. Methods: Env-specific IgG responses were mapped in samples of the UKHVC003 Standard Group (UK003SG, n = 11 from UK) and TaMoVac01 (TMV01, n = 17 from Tanzania) HIV vaccine trials. Both trials consisted of three immunizations with DNA, followed by two boosts with recombinant Modified Vaccinia Virus Ankara (MVA), either mediating secretion of gp120 (UK003SG) or the presentation of cell membrane bound gp150 envelopes (TMV01) from infected cells, and an additional two boosts with 5 µg of CN54gp140 protein adjuvanted with glucopyranosyl lipid adjuvant (GLA). Env immunogen sequences in UK003SG were solely based on the clade C isolate CN54, whereas in TMV01 these were based on clades A, C, B, and CRF01AE. The peptide microarray included 8 globally representative Env sequences, CN54gp140 and the MVA-encoded Env immunogens from both trials, as well as additional peptide variants for hot spots of immune recognition. Results: After the second MVA boost, UK003SG vaccinees almost exclusively targeted linear, non-glycosylated antigenic regions located in the inter-gp120 interface. In contrast, TMV01 recipients most strongly targeted the V2 region and an immunodominant region in gp41. The V3 region was frequently targeted in both trials, with a higher recognition magnitude for diverse antigenic variants observed in the UK003SG (p < 0.0001). After boosting with CN54gp140/GLA, the overall response magnitude increased with a more comparable recognition pattern of antigenic regions and variants between the two trials. Recognition of most immunodominant regions within gp120 remained significantly stronger in UK003SG, whereas V2-region recognition was not boosted in either group. Conclusions: IgG recognition of linear antigenic Env regions differed between the two trials particularly after the second MVA boost. Structural features of the MVA-encoded immunogens, such as secreted, monomeric gp120 vs. membrane-anchored, functional gp150, and differences in prime-boost immunogen sequence variability most probably contributed to these differences. Prime-boosting with multivalent Env immunogens during TMV01 did not improve variant cross-recognition of immunodominant peptide variants in the V3 region.


Assuntos
Vacinas contra a AIDS/imunologia , Antígenos Virais/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV/imunologia , Imunoglobulina G/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Adolescente , Adulto , Motivos de Aminoácidos , Sequência de Aminoácidos , Especificidade de Anticorpos/imunologia , Antígenos Virais/química , Mapeamento de Epitopos , Epitopos/química , Epitopos/imunologia , Feminino , HIV/classificação , HIV/genética , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , Humanos , Esquemas de Imunização , Imunização Secundária , Masculino , Modelos Moleculares , Filogenia , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Vacinação , Adulto Jovem , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
10.
Nat Chem Biol ; 15(5): 437-443, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30936500

RESUMO

The rise of antibiotic resistance demands the acceleration of molecular diversification strategies to inspire new chemical entities for antibiotic medicines. We report here on the large-scale engineering of ribosomally synthesized and post-translationally modified antimicrobial peptides carrying the ring-forming amino acid lanthionine. New-to-nature variants featuring distinct properties were obtained by combinatorial shuffling of peptide modules derived from 12 natural antimicrobial lanthipeptides and processing by a promiscuous post-translational modification machinery. For experimental characterization, we developed the nanoFleming, a miniaturized and parallelized high-throughput inhibition assay. On the basis of a hit set of >100 molecules, we identified variants with improved activity against pathogenic bacteria and shifted activity profiles, and extrapolated design guidelines that will simplify the identification of peptide-based anti-infectives in the future.


Assuntos
Alanina/análogos & derivados , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Peptídeos/farmacologia , Engenharia de Proteínas , Sulfetos/farmacologia , Alanina/química , Alanina/metabolismo , Alanina/farmacologia , Antibacterianos/química , Antibacterianos/metabolismo , Desenho de Fármacos , Testes de Sensibilidade Microbiana , Peptídeos/química , Peptídeos/metabolismo , Sulfetos/química , Sulfetos/metabolismo
11.
MAbs ; 9(7): 1052-1064, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28816583

RESUMO

The elicitation of broadly and efficiently neutralizing antibodies in humans by active immunization is still a major obstacle in the development of vaccines against pathogens such as the human immunodeficiency virus (HIV), influenza virus, hepatitis C virus or cytomegalovirus. Here, we describe a mammalian cell surface display and monoclonal antibody (mAb)-mediated panning technology that allows affinity-based selection of envelope (Env) variants from libraries. To this end, we established an experimental setup featuring: 1) single and site specific integration of Env to link genotype and phenotype, 2) inducible Env expression to avoid cytotoxicity effects, 3) translational coupling of Env and enhanced green fluorescent protein expression to normalize for Env protein levels, and 4) display on HEK cells to ensure native folding and mammalian glycosylation. For proof of concept, we applied our method to a chimeric HIV-1 Env model library comprising variants with differential binding affinities to the V3-loop-directed mAbs 447-52D and HGN194. Fluorescence-activated cell sorting selectively enriched a high affinity variant up to 56- and 55-fold for 447-52D and HGN194, respectively, after only a single round of panning. Similarly, the low affinity variants for each antibody could be selectively enriched up to 237-fold. The binding profiles of membrane-bound gp145 and soluble gp140 chimeras showed identical affinity ranking, suggesting that the technology can guide the identification of Env variants with optimized antigenic properties for subsequent use as vaccine candidates. Finally, our mAb-based cellular display and selection strategy may also prove useful for the development of prophylactic vaccines against pathogens other than HIV.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Anticorpos Neutralizantes/isolamento & purificação , Citometria de Fluxo/métodos , Proteínas do Envelope Viral/imunologia , Células HEK293 , Humanos
12.
J Biol Chem ; 291(28): 14861-70, 2016 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-27226549

RESUMO

In Archaea, ether lipids play an essential role as the main building blocks of the cellular membrane. Recently, ether lipids have also been discovered in the domain of Bacteria, and the key enzymes that catalyze their synthesis, glycerol-1-phosphate dehydrogenase and heptaprenylglyceryl phosphate synthase, have been described. In Bacillales, heptaprenylglyceryl phosphate does not become linked to a second polyprenyl moiety like ether lipids in Archaea but is dephosphorylated and acetylated. Here, we report on the enzymes that catalyze these reactions. We enriched the phosphatase activity from a B. subtilis cell extract and suppose that dephosphorylation is catalyzed by the phosphatase PhoB or by any other phosphatase in an unspecific manner. By screening a B. subtilis knock-out library for deficiency in acetylation, the yvoF gene product was identified to be the acetyltransferase. The acetyl-CoA-dependent enzyme YvoF is a close relative of maltose O-acetyltransferase (MAT). Its catalytic properties were analyzed and compared with MAT. YvoF and MAT partially overlap in substrate and product range in vitro, but MAT is not able to complement the yvoF knock-out in vivo.


Assuntos
Bacillus subtilis/enzimologia , Glicerolfosfato Desidrogenase/metabolismo , Acetiltransferases/metabolismo , Biocatálise , Glicerolfosfato Desidrogenase/química , Fosforilação
13.
Mol Microbiol ; 92(4): 885-99, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24684232

RESUMO

Geranylgeranylglyceryl phosphate synthase (GGGPS) family enzymes catalyse the formation of an ether bond between glycerol-1-phosphate and polyprenyl diphosphates. They are essential for the biosynthesis of archaeal membrane lipids, but also occur in bacterial species, albeit with unknown physiological function. It has been known that there exist two phylogenetic groups (I and II) of GGGPS family enzymes, but a comprehensive study has been missing. We therefore visualized the variability within the family by applying a sequence similarity network, and biochemically characterized 17 representative GGGPS family enzymes regarding their catalytic activities and substrate specificities. Moreover, we present the first crystal structures of group II archaeal and bacterial enzymes. Our analysis revealed that the previously uncharacterized bacterial enzymes from group II have GGGPS activity like the archaeal enzymes and differ from the bacterial group I enzymes that are heptaprenylglyceryl phosphate synthases. The length of the isoprenoid substrate is determined in group II GGGPS enzymes by 'limiter residues' that are different from those in group I enzymes, as shown by site-directed mutagenesis. Most of the group II enzymes form hexamers. We could disrupt these hexamers to stable and catalytically active dimers by mutating a single amino acid that acts as an 'aromatic anchor'.


Assuntos
Alquil e Aril Transferases/química , Alquil e Aril Transferases/metabolismo , Archaea/enzimologia , Bactérias/enzimologia , Alquil e Aril Transferases/genética , Modelos Moleculares , Filogenia , Estrutura Quaternária de Proteína , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
14.
Chembiochem ; 13(9): 1297-303, 2012 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-22614947

RESUMO

We have identified the native dimer interface of heptaprenylglyceryl phosphate synthase PcrB from the bacterium Bacillus subtilis and analyzed the significance of oligomer formation for stability and catalytic activity. Computational methods predicted two different surface regions of the PcrB protomer that could be responsible for dimer formation. These bona fide interfaces were assessed both in silico and experimentally by the introduction of amino acid substitutions that led to monomerization, and by incorporation of an unnatural amino acid to allow cross-linking of the two protomers. The results showed that, in contrast to previous assumptions, PcrB uses the same interface for dimerization as the homologous geranylgeranylglyceryl phosphate synthase from Archaea. Thermal unfolding demonstrated that the monomeric proteins are only slightly less stable than wild-type PcrB. However, activity assays showed that monomerization limits the length of accepted polyprenyl pyrophosphates to three isoprene units, whereas the native PcrB substrate contains seven isoprene entities. We provide a plausible hypothesis as to how dimerization determines substrate specificity of PcrB.


Assuntos
Bacillus subtilis/enzimologia , Dimetilaliltranstransferase/química , Dimetilaliltranstransferase/metabolismo , Multimerização Proteica , Substituição de Aminoácidos , Dimetilaliltranstransferase/genética , Estabilidade Enzimática , Modelos Moleculares , Estrutura Quaternária de Proteína , Especificidade por Substrato , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA