Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hepatology ; 57(5): 1763-72, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23175050

RESUMO

UNLABELLED: Genome-wide array studies have associated the patatin-like phospholipase domain-containing 3 (PNPLA3) gene polymorphisms with hepatic steatosis. However, it is unclear whether PNPLA3 functions as a lipase or a lipogenic enzyme and whether PNPLA3 is involved in the pathogenesis of hepatic insulin resistance. To address these questions we treated high-fat-fed rats with specific antisense oligonucleotides to decrease hepatic and adipose pnpla3 expression. Reducing pnpla3 expression prevented hepatic steatosis, which could be attributed to decreased fatty acid esterification measured by the incorporation of [U-(13) C]-palmitate into hepatic triglyceride. While the precursors for phosphatidic acid (PA) (long-chain fatty acyl-CoAs and lysophosphatidic acid [LPA]) were not decreased, we did observe an ∼20% reduction in the hepatic PA content, ∼35% reduction in the PA/LPA ratio, and ∼60%-70% reduction in transacylation activity at the level of acyl-CoA:1-acylglycerol-sn-3-phosphate acyltransferase. These changes were associated with an ∼50% reduction in hepatic diacylglycerol (DAG) content, an ∼80% reduction in hepatic protein kinase Cε activation, and increased hepatic insulin sensitivity, as reflected by a 2-fold greater suppression of endogenous glucose production during the hyperinsulinemic-euglycemic clamp. Finally, in humans, hepatic PNPLA3 messenger RNA (mRNA) expression was strongly correlated with hepatic triglyceride and DAG content, supporting a potential lipogenic role of PNPLA3 in humans. CONCLUSION: PNPLA3 may function primarily in a lipogenic capacity and inhibition of PNPLA3 may be a novel therapeutic approach for treatment of nonalcoholic fatty liver disease-associated hepatic insulin resistance.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/fisiopatologia , Resistência à Insulina/fisiologia , Lipídeos/efeitos adversos , Proteínas de Membrana/fisiologia , Fosfolipases A2/fisiologia , Animais , Biópsia , Diglicerídeos/metabolismo , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Proteínas de Membrana/efeitos dos fármacos , Proteínas de Membrana/genética , Oligonucleotídeos Antissenso/farmacologia , Fosfolipases A2/efeitos dos fármacos , Fosfolipases A2/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Triglicerídeos/metabolismo
2.
Cell Metab ; 12(6): 668-74, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21109199

RESUMO

Aging-associated muscle insulin resistance has been hypothesized to be due to decreased mitochondrial function, secondary to cumulative free radical damage, leading to increased intramyocellular lipid content. To directly test this hypothesis, we examined both in vivo and in vitro mitochondrial function, intramyocellular lipid content, and insulin action in lean healthy mice with targeted overexpression of the human catalase gene to mitochondria (MCAT mice). Here, we show that MCAT mice are protected from age-induced decrease in muscle mitochondrial function (∼30%), energy metabolism (∼7%), and lipid-induced muscle insulin resistance. This protection from age-induced reduction in mitochondrial function was associated with reduced mitochondrial oxidative damage, preserved mitochondrial respiration and muscle ATP synthesis, and AMP-activated protein kinase-induced mitochondrial biogenesis. Taken together, these data suggest that the preserved mitochondrial function maintained by reducing mitochondrial oxidative damage may prevent age-associated whole-body energy imbalance and muscle insulin resistance.


Assuntos
Envelhecimento/metabolismo , Catalase/metabolismo , Metabolismo Energético/fisiologia , Resistência à Insulina/fisiologia , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Músculo Esquelético/metabolismo , Trifosfato de Adenosina/biossíntese , Animais , Catalase/genética , Dano ao DNA , Humanos , Insulina/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Mitocôndrias/ultraestrutura , Estresse Oxidativo/fisiologia , Consumo de Oxigênio/fisiologia , Espécies Reativas de Oxigênio/metabolismo
3.
PLoS Med ; 2(9): e233, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16089501

RESUMO

BACKGROUND: Insulin resistance is the best predictor for the development of type 2 diabetes. Recent studies have shown that young, lean, insulin-resistant (IR) offspring of parents with type 2 diabetes have reduced basal rates of muscle mitochondrial phosphorylation activity associated with increased intramyocellular lipid (IMCL) content, which in turn blocks insulin signaling and insulin action in muscle. In order to further characterize mitochondrial activity in these individuals, we examined insulin-stimulated rates of adenosine triphosphate (ATP) synthesis and phosphate transport in skeletal muscle in a similar cohort of participants. METHODS AND FINDINGS: Rates of insulin-stimulated muscle mitochondrial ATP synthase flux and insulin-stimulated increases in concentrations of intramyocellular inorganic phosphate (Pi) were assessed by 31P magnetic resonance spectroscopy (MRS) in healthy, lean, IR offspring of parents with type 2 diabetes and healthy, lean control participants with normal insulin sensitivity. IMCL content in the soleus muscle of all participants was assessed by 1H MRS. During a hyperinsulinemic-euglycemic clamp, rates of insulin-stimulated glucose uptake were decreased by approximately 50% in the IR offspring compared to the control participants (p = 0.007 versus controls) and were associated with an approximately 2-fold increase in IMCL content (p < 0.006 versus controls). In the control participants rates of ATP synthesis increased by approximately 90% during the hyperinsulinemic-euglycemic clamp. In contrast, insulin-stimulated rates of muscle mitochondrial ATP synthesis increased by only 5% in the IR offspring (p = 0.001 versus controls) and was associated with a severe reduction of insulin-stimulated increases in the intramyocellular Pi concentrations (IR offspring: 4.7% +/- 1.9% versus controls: 19.3% +/- 5.7%; p = 0.03). Insulin-induced increases in intramyocellular Pi concentrations correlated well with insulin-stimulated increases in rates of ATP synthesis (r = 0.67; p = 0.008). CONCLUSIONS: These data demonstrate that insulin-stimulated rates of mitochondrial ATP synthesis are reduced in IR offspring of parents with type 2 diabetes. Furthermore, these IR offspring also have impaired insulin-stimulated phosphate transport in muscle, which may contribute to their defects in insulin-stimulated rates of mitochondrial ATP synthesis.


Assuntos
Trifosfato de Adenosina/metabolismo , Diabetes Mellitus Tipo 2/genética , Resistência à Insulina/genética , Insulina/administração & dosagem , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Trifosfato de Adenosina/biossíntese , Adulto , Calorimetria Indireta , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Predisposição Genética para Doença , Glucose/metabolismo , Técnica Clamp de Glucose , Humanos , Metabolismo dos Lipídeos , Espectroscopia de Ressonância Magnética , Masculino , Fosforilação Oxidativa , Fosfatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA