Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Am J Physiol Endocrinol Metab ; 317(5): E760-E772, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31310580

RESUMO

Adiponectin, a highly abundant polypeptide hormone in plasma, plays an important role in the regulation of energy metabolism in a wide variety of tissues, as well as providing important beneficial effects in diabetes, inflammation, and cardiovascular disease. To act on target tissues, adiponectin must move from the circulation to the interstitial space, suggesting that vascular permeability plays an important role in regulating adiponectin action. To test this hypothesis, fluorescently labeled adiponectin was used to monitor its biodistribution in mice with streptozotocin-induced diabetes (STZD). Adiponectin was, indeed, found to have increased sequestration in the highly fenestrated liver and other tissues within 90 min in STZD mice. In addition, increased myocardial adiponectin was detected and confirmed using computed tomography (CT) coregistration. This provided support of adiponectin delivery to affected cardiac tissue as a cardioprotective mechanism. Higher adiponectin content in the STZD heart tissues was further examined by ex vivo fluorescence molecular tomography (FMT) imaging, immunohistochemistry, and Western blot analysis. In vitro mechanistic studies using an endothelial monolayer on inserts and three-dimensional microvascular networks on microfluidic chips further confirmed that adiponectin flux was increased by high glucose. However, in the in vitro model and mouse heart tissue, high glucose levels did not change adiponectin receptor levels. An examination of the tight junction (TJ) complex revealed a decrease in the TJ protein claudin (CLDN)-7 in high glucose-treated endothelial cells, and the functional significance of this change was underscored by increased endothelium permeability upon siRNA-mediated knockdown of CLDN-7. Our data support the idea that glucose-induced effects on permeability of the vascular endothelium contribute to the actions of adiponectin by regulating its transendothelial movement from blood to the interstitial space. These observations are physiologically significant and critical when considering ways to harness the therapeutic potential of adiponectin for diabetes.


Assuntos
Adiponectina/metabolismo , Permeabilidade Capilar , Diabetes Mellitus Experimental/metabolismo , Animais , Linhagem Celular , Diabetes Mellitus Experimental/patologia , Células Endoteliais/metabolismo , Fluorescência , Técnicas de Silenciamento de Genes , Glucose/farmacologia , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microcirculação , Miocárdio/metabolismo , Ratos , Ratos Wistar , Distribuição Tecidual , Tomografia/métodos , Tomografia Computadorizada por Raios X
2.
Mol Imaging Biol ; 21(4): 599-611, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30218390

RESUMO

Fluorescence molecular imaging (MI) is an important concept in preclinical research that focuses on the visualization of cellular and biological function in a non-invasive fashion to better understand in vivo disease processes and treatment effects. MI differs fundamentally from traditional preclinical imaging strategies in that it generally relies on reporter probes specific for particular targets or pathways that can be used to reveal biological changes in situ, at the site(s) of disease. In contrast, the more established imaging modalities, like magnetic resonance imaging, X-ray, micro X-ray computed tomography, and ultrasound, historically have relied primarily on late-stage anatomical or physiologic changes. The practical application of fluorescence MI, however, has drifted somewhat from the emphasis on quantifying biology, and based on the publication record, it now appears to include any imaging in which a probe or contrast agent is used to non-invasively acquire in vivo endpoint information. Unfortunately, the mere use of a defined biologically specific probe, in the absence of careful study design, does not guarantee that any useful biological information is actually gained, although often useful endpoint results still can be achieved. This review proposes to add subcategories of MI, termed MI biological assessment (or MIBA), that emphasize a focus on obtaining early and clear biological changes associated with disease development, therapeutic efficacy, and drug-induced tissue changes. Proper selection of probes and careful study design are critical for maximizing the non-invasive assessment of in vivo biological changes, and applications of these critical elements are described.


Assuntos
Doença , Imagem Molecular/efeitos adversos , Animais , Biomarcadores/metabolismo , Progressão da Doença , Fluorescência , Humanos , Resultado do Tratamento
3.
Opt Lett ; 42(15): 2964-2967, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957220

RESUMO

Intraoperative fluorescence imaging informs decisions regarding surgical margins by detecting and localizing signals from fluorescent reporters, labeling targets such as malignant tissues. This guidance reduces the likelihood of undetected malignant tissue remaining after resection, eliminating the need for additional treatment or surgery. The primary challenges in performing open-air intraoperative fluorescence imaging come from the weak intensity of the fluorescence signal in the presence of strong surgical and ambient illumination, and the auto-fluorescence of non-target components, such as tissue, especially in the visible spectral window (400-650 nm). In this work, a multispectral open-air fluorescence imaging system is presented for translational image-guided intraoperative applications, which overcomes these challenges. The system is capable of imaging weak fluorescence signals with nanomolar sensitivity in the presence of surgical illumination. This is done using synchronized fluorescence excitation and image acquisition with real-time background subtraction. Additionally, the system uses a liquid crystal tunable filter for acquisition of multispectral images that are used to spectrally unmix target fluorescence from non-target auto-fluorescence. Results are validated by preclinical studies on murine models and translational canine oncology models.


Assuntos
Microscopia de Fluorescência/métodos , Neoplasias/diagnóstico por imagem , Imagem Óptica/métodos , Animais , Cães , Corantes Fluorescentes , Humanos , Cristais Líquidos
4.
PLoS One ; 12(8): e0182689, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28792505

RESUMO

Physical measurement of tumor volume reduction is the most commonly used approach to assess tumor progression and treatment efficacy in mouse tumor models. However, it is relatively insensitive, and often requires long treatment courses to achieve gross physical tumor destruction. As alternatives, several non-invasive imaging methods such as bioluminescence imaging (BLI), fluorescence imaging (FLI) and positron emission tomography (PET) have been developed for more accurate measurement. As tumors have elevated glucose metabolism, 18F-fludeoxyglucose (18F-FDG) has become a sensitive PET imaging tracer for cancer detection, diagnosis, and efficacy assessment by measuring alterations in glucose metabolism. In particular, the ability of 18F-FDG imaging to detect drug-induced effects on tumor metabolism at a very early phase has dramatically improved the speed of decision-making regarding treatment efficacy. Here we demonstrated an approach with FLI that offers not only comparable performance to PET imaging, but also provides additional benefits, including ease of use, imaging throughput, probe stability, and the potential for multiplex imaging. In this report, we used sorafenib, a tyrosine kinase inhibitor clinically approved for cancer therapy, for treatment of a mouse tumor xenograft model. The drug is known to block several key signaling pathways involved in tumor metabolism. We first identified an appropriate sorafenib dose, 40 mg/kg (daily on days 0-4 and 7-10), that retained ultimate therapeutic efficacy yet provided a 2-3 day window post-treatment for imaging early, subtle metabolic changes prior to gross tumor regression. We then used 18F-FDG PET as the gold standard for assessing the effects of sorafenib treatment on tumor metabolism and compared this to results obtained by measurement of tumor size, tumor BLI, and tumor FLI changes. PET imaging showed ~55-60% inhibition of tumor uptake of 18F-FDG as early as days 2 and 3 post-treatment, without noticeable changes in tumor size. For comparison, two FLI probes, BombesinRSense™ 680 (BRS-680) and Transferrin-Vivo™ 750 (TfV-750), were assessed for their potential in metabolic imaging. Metabolically active cancer cells are known to have elevated bombesin and transferrin receptor levels on the surface. In excellent agreement with PET imaging, the BRS-680 imaging showed 40% and 79% inhibition on days 2 and 3, respectively, and the TfV-750 imaging showed 65% inhibition on day 3. In both cases, no significant reduction in tumor volume or BLI signal was observed during the first 3 days of treatment. These results suggest that metabolic FLI has potential preclinical application as an additional method for detecting drug-induced metabolic changes in tumors.


Assuntos
Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/tratamento farmacológico , Imagem Óptica , Tomografia por Emissão de Pósitrons , Receptores da Bombesina/metabolismo , Receptores da Transferrina/metabolismo , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Progressão da Doença , Relação Dose-Resposta a Droga , Corantes Fluorescentes , Fluordesoxiglucose F18 , Humanos , Camundongos Transgênicos , Imagem Molecular , Transplante de Neoplasias , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Compostos de Fenilureia/farmacologia , Compostos Radiofarmacêuticos , Distribuição Aleatória , Sorafenibe , Resultado do Tratamento , Carga Tumoral
5.
Chem Commun (Camb) ; 50(50): 6589-91, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24823600

RESUMO

Visualization of macrophages in live animals has been of great interest for a better understanding of inflammation. We developed a near infrared (NIR) probe that can selectively detect macrophages and visualize inflammation in vivo using the IVIS spectrum, Fluorescence Molecular Tomography (FMT) and Multi-Spectral Optoacoustic Tomography (MSOT).


Assuntos
Diagnóstico por Imagem , Corantes Fluorescentes , Inflamação/diagnóstico , Macrófagos/patologia , Animais , Células Cultivadas , Camundongos , Espectroscopia de Luz Próxima ao Infravermelho , Tomografia
6.
J Biomed Opt ; 18(10): 101319, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23933968

RESUMO

Assays for blood levels of prostate-specific antigen (PSA), performed in prostate cancer detection, measure mostly inactive/complexed PSA and do not provide information regarding enzymatically active PSA, which is biologically more relevant. Thus, we designed and synthesized an enzymatically cleavable peptide sequence labeled with near-infrared (NIR) fluorophores (ex/em 740/770 nm) and coupled it to a pharmacokinetic modifier designed to improve its plasma kinetics. In its native state, the agent, PSA750 FAST™ (PSA750), is optically quenched (>95%) and only becomes fluorescent upon cleavage by active PSA, yielding a significant increase in signal. This activation is highly selective for PSA relative to a large panel of disease-relevant enzymes. Active PSA was detected in tumor frozen sections using PSA750 and this activity was abolished in the presence of the inhibitor, alpha-1 anti-chymotrypsin. In vivo imaging of tumor-bearing mice using fluorescence molecular tomography demonstrated a significantly higher fluorescent signal in PSA+ LNCaP tumors as compared to PSA- prostate cancer 3 tumors (13.0±3.7 versus 2.8±0.8 pmol, p=0.023). Ex vivo imaging of tumor sections confirms PSA750-derived NIR signal localization in nonvascular tissue. This is the first report that demonstrates the feasibility and effectiveness of noninvasive, real time, fluorescence molecular imaging of PSA enzymatic activity in prostate cancer.


Assuntos
Corantes Fluorescentes/análise , Imagem Molecular/métodos , Antígeno Prostático Específico/análise , Tomografia Óptica/métodos , Análise de Variância , Animais , Linhagem Celular Tumoral , Feminino , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Corantes Fluorescentes/farmacocinética , Histocitoquímica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia de Fluorescência , Oligopeptídeos/análise , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Oligopeptídeos/farmacocinética , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/química , Neoplasias da Próstata/metabolismo
7.
PLoS One ; 7(11): e50860, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23226406

RESUMO

Carbonic anhydrase IX (CA IX) is a transmembrane protein that has been shown to be greatly upregulated under conditions of hypoxia in many tumor cell lines. Tumor hypoxia is associated with impaired efficacy of cancer therapies making CA IX a valuable target for preclinical and diagnostic imaging. We have developed a quantitative in vivo optical imaging method for detection of CA IX as a marker of tumor hypoxia based on a near-infrared (NIR) fluorescent derivative of the CA IX inhibitor acetazolamide (AZ). The agent (HS680) showed single digit nanomolar inhibition of CA IX as well as selectivity over other CA isoforms and demonstrated up to 25-fold upregulation of fluorescent CA IX signal in hypoxic versus normoxic cells, which could be blocked by 60%-70% with unlabeled AZ. CA IX negative cell lines (HCT-116 and MDA-MB-231), as well as a non-binding control agent on CA IX positive cells, showed low fluorescent signal under both conditions. In vivo FMT imaging showed tumor accumulation and excellent tumor definition from 6-24 hours. In vivo selectivity was confirmed by pretreatment of the mice with unlabeled AZ resulting in >65% signal inhibition. HS680 tumor signal was further upregulated >2X in tumors by maintaining tumor-bearing mice in a low oxygen (8%) atmosphere. Importantly, intravenously injected HS680 signal was co-localized specifically with both CA IX antibody and pimonidazole (Pimo), and was located away from non-hypoxic regions indicated by a Hoechst stain. Thus, we have established a spatial correlation of fluorescence signal obtained by non-invasive, tomographic imaging of HS680 with regions of hypoxia and CA IX expression. These results illustrate the potential of HS680 and combined with FMT imaging to non-invasively quantify CA IX expression as a hypoxia biomarker, crucial to the study of the underlying biology of hypoxic tumors and the development and monitoring of novel anti-cancer therapies.


Assuntos
Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais/metabolismo , Anidrases Carbônicas/metabolismo , Diagnóstico por Imagem/métodos , Neoplasias/enzimologia , Neoplasias/patologia , Imagem Óptica/métodos , Animais , Anidrase Carbônica IX , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Feminino , Fluorescência , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Humanos , Camundongos , Peso Molecular , Oxigênio/farmacologia , Transporte Proteico/efeitos dos fármacos , Distribuição Tecidual/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Am J Physiol Renal Physiol ; 303(4): F593-603, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22674025

RESUMO

The renin-angiotensin system (RAS) is well studied for its regulation of blood pressure and fluid homeostasis, as well as for increased activity associated with a variety of diseases and conditions, including cardiovascular disease, diabetes, and kidney disease. The enzyme renin cleaves angiotensinogen to form angiotensin I (ANG I), which is further cleaved by angiotensin-converting enzyme to produce ANG II. Although ANG II is the main effector molecule of the RAS, renin is the rate-limiting enzyme, thus playing a pivotal role in regulating RAS activity in hypertension and organ injury processes. Our objective was to develop a near-infrared fluorescent (NIRF) renin-imaging agent for noninvasive in vivo detection of renin activity as a measure of tissue RAS and in vitro plasma renin activity. We synthesized a renin-activatable agent, ReninSense 680 FAST (ReninSense), using a NIRF-quenched substrate derived from angiotensinogen that is cleaved specifically by purified mouse and rat renin enzymes to generate a fluorescent signal. This agent was assessed in vitro, in vivo, and ex vivo to detect and quantify increases in plasma and kidney renin activity in sodium-sensitive inbred C57BL/6 mice maintained on a low dietary sodium and diuretic regimen. Noninvasive in vivo fluorescence molecular tomographic imaging of the ReninSense signal in the kidney detected increased renin activity in the kidneys of hyperreninemic C57BL/6 mice. The agent also effectively detected renin activity in ex vivo kidneys, kidney tissue sections, and plasma samples. This approach could provide a new tool for assessing disorders linked to altered tissue and plasma renin activity and to monitor the efficacy of therapeutic treatments.


Assuntos
Corantes Fluorescentes/farmacologia , Peptídeos/farmacologia , Renina/sangue , Renina/metabolismo , Ração Animal/análise , Animais , Catepsina D , Catepsina G , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Peptidil Dipeptidase A/metabolismo , Ratos , Sistema Renina-Angiotensina/fisiologia , Sensibilidade e Especificidade , Sódio na Dieta
9.
Bioorg Med Chem Lett ; 22(1): 653-7, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22079760

RESUMO

A series of human carbonic anhydrase (hCA) IX inhibitors conjugated to various near-infrared fluorescent dyes was synthesized with the aim of imaging hypoxia-induced hCA IX expression in tumor cells in vitro, ex vivo and in vivo. The resulting compounds were profiled for inhibition of transmembrane hCA IX showing a range of potencies from 7.5 to 116 nM and up to 50-fold selectivity over the cytosolic form hCA II. Some of the compounds also showed inhibition selectivity for other transmembrane forms hCA XII and XIV as well. Compounds incubated in vitro with HeLa cells cultured under normoxic and hypoxic conditions detected upregulation of hCA IX under hypoxia by fluorescence microscopy. A pilot in vivo study in HT-29 tumor bearing mice showed significant accumulation of a fluorescent acetazolamide derivative in tumor tissue with little accumulation in other tissues. Approximately 10% of injected dose was non-invasively quantified in tumors by fluorescence molecular tomography (FMT), demonstrating the promise of these new compounds for quantitative imaging of hCA IX upregulation in live animals.


Assuntos
Antígenos de Neoplasias/biossíntese , Anidrases Carbônicas/biossíntese , Regulação Enzimológica da Expressão Gênica , Neoplasias/patologia , Sulfonamidas/farmacologia , Animais , Anidrase Carbônica IX , Linhagem Celular Tumoral , Citosol/metabolismo , Relação Dose-Resposta a Droga , Desenho de Fármacos , Corantes Fluorescentes/farmacologia , Células HeLa , Humanos , Hipóxia , Cinética , Camundongos , Microscopia de Fluorescência/métodos , Modelos Químicos , Transplante de Neoplasias , Neoplasias/metabolismo , Tomografia Computadorizada por Raios X/métodos , Regulação para Cima
10.
Int J Oncol ; 38(1): 71-80, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21109927

RESUMO

Antiangiogenesis has become a promising pillar in modern cancer therapy. This study investigates the antiangiogenic effects of the PEGylated Adnectin™, CT-322, in a murine Colo-205 xenograft tumor model. CT-322 specifically binds to and blocks vascular endothelial growth factor receptor (VEGFR-2). Adnectins are a novel class of targeted biologics engineered from the 10th domain of human fibronectin. CT-322 treated tumors exhibited a significant reduction in tumor growth of 69%, a 2.8 times lower tumor surface area and fewer necrotic areas. Control tumors showed a 2.36-fold higher microvessel density (MVD) and a 2.42 times higher vessel volume in corrosion casts. The vascular architecture in CT-322-treated tumors was characterized by a strong normalization of vasculature. This was quantified in corrosion casts of CT-322 treated tumors in which the intervascular distance (a reciprocal parameter indicative of vessel density) and the distance between two consecutive branchings were assessed, with these distances being 2.21 times and 2.37 times greater than in controls, respectively. Fluorescence molecular tomography (FMT) equally affirmed the inhibitory effects of CT-322 on tumor vasculature as indicated by a 60% reduction of the vascular probe, AngioSense, accumulating in tumor tissue, as a measurement of vascular permeability. Moreover, AngioSense accumulation was reduced as early as 24 h after starting treatment. The sum of these effects on tumor vasculature illustrates the anti-angiogenic mechanism underlying the antitumor activity of CT-322 and provides support for further evaluation of this Adnectin in combinatorial strategies with standard of care therapies.


Assuntos
Neoplasias do Colo/irrigação sanguínea , Neoplasias do Colo/tratamento farmacológico , Fibronectinas/farmacologia , Fragmentos de Peptídeos/farmacologia , Animais , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Feminino , Humanos , Rim/irrigação sanguínea , Camundongos , Camundongos Nus , Microscopia Eletrônica de Varredura , Microvasos/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Resultado do Tratamento , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
11.
J Pharmacol Exp Ther ; 329(3): 882-9, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19293392

RESUMO

Animal models of pulmonary inflammation are critical for understanding the pathophysiology of asthma and for developing new therapies. Current conventional assessments in mouse models of asthma and chronic obstructive pulmonary disease rely on invasive measures of pulmonary function and terminal characterization of cells infiltrating into the lung. The ability to noninvasively visualize and quantify the underlying biological processes in mouse pulmonary models in vivo would provide a significant advance in characterizing disease processes and the effects of therapeutics. We report the utility of near-infrared imaging agents, in combination with fluorescence molecular tomography (FMT) imaging, for the noninvasive quantitative imaging of mouse lung inflammation in an ovalbumin (OVA)-induced chronic asthma model. BALB/c mice were intraperitoneally sensitized with OVA-Alum (aluminum hydroxide) at days 0 and 14, followed by daily intranasal challenge with OVA in phosphate-buffered saline from days 21 to 24. Dexamethasone and control therapies were given intraperitoneally 4 h before each intranasal inhalation of OVA from days 21 to 24. Twenty-four hours before imaging, the mice were injected intravenously with 5 nmol of the cathepsin-activatable fluorescent agent, ProSense 680. Quantification by FMT revealed in vivo cysteine protease activity within the lung associated with the inflammatory eosinophilia, which decreased in response to dexamethasone treatment. Results were correlated with in vitro laboratory tests (bronchoalveolar lavage cell analysis and immunohistochemistry) and revealed good correlation between these measures and quantification of ProSense 680 activation. We have demonstrated the ability of FMT to noninvasively visualize and quantify inflammation in the lung and monitor therapeutic efficacy in vivo.


Assuntos
Asma/tratamento farmacológico , Asma/patologia , Dexametasona/uso terapêutico , Ovalbumina/imunologia , Tomografia/métodos , Animais , Anti-Inflamatórios/uso terapêutico , Asma/induzido quimicamente , Asma/metabolismo , Brônquios/metabolismo , Brônquios/patologia , Líquido da Lavagem Broncoalveolar/citologia , Catepsinas/metabolismo , Contagem de Células , Dexametasona/farmacologia , Eosinofilia/tratamento farmacológico , Eosinofilia/metabolismo , Eosinofilia/patologia , Eosinófilos/citologia , Eosinófilos/metabolismo , Feminino , Corantes Fluorescentes/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência/métodos
12.
Clin Cancer Res ; 9(9): 3454-61, 2003 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12960137

RESUMO

PURPOSE: The purpose of this study was to evaluate the activity of CG53135 (FGF-20), a protein with in vitro mitogenic activity on epithelial and mesenchymal cells, in two in vivo models of oral mucositis (OM). EXPERIMENTAL DESIGN: Radiation or concomitant chemotherapy/radiation-induced OM was elicited in hamsters. Activity of CG53135 was assessed at different doses and regimens in the models. Bromodeoxyuridine (BrdUrd) incorporation and pharmacokinetic studies were also performed to correlate in vivo activity of CG53135 with exposure. RESULTS: In the hamster radiation model, administration of CG53135 (600 or 1200 micro g/day, i.p.) on days 3-15 resulted in a statistically significant (P < 0.001) reduction in days spent with severe mucositis. CG53135 administered at 12 mg/kg, i.p. (days 1-2 or 1-8) in the concomitant chemotherapy/radiation model resulted in a statistically significant (P < 0.001) reduction in severe mucositis. Maximal BrdUrd incorporation was observed in cheek pouch and jejunal tissues at 8 h, and peak plasma levels of CG53135 were reached 1 h after administration. CONCLUSIONS: CG53135 demonstrates potent, regimen-dependent activity in hamster models of OM. The activity was regimen dependent. BrdUrd incorporation studies confirmed that CG53135 had proliferative activity in vivo with a favorable pharmacokinetic profile. Based in part on work described herein, CG53135 has received approval from the United States Food and Drug Administration to be evaluated in a Phase I clinical trial of cancer patients at risk for developing OM.


Assuntos
Fatores de Crescimento de Fibroblastos/uso terapêutico , Mucosa Bucal/patologia , Lesões por Radiação/terapia , Animais , Bromodesoxiuridina/farmacologia , Bochecha/patologia , Corantes/farmacologia , Cricetinae , Relação Dose-Resposta a Droga , Fluoruracila/farmacologia , Humanos , Jejuno/metabolismo , Masculino , Mesocricetus , Mucosa/efeitos dos fármacos , Mucosa/efeitos da radiação , Proteínas Recombinantes/uso terapêutico , Estomatite/induzido quimicamente , Estomatite/tratamento farmacológico , Fatores de Tempo
13.
J Med Chem ; 46(8): 1337-49, 2003 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-12672234

RESUMO

The tyrosine kinase p56lck (lck) is essential for T cell activation; thus, inhibitors of lck have potential utility as autoimmune agents. Our initial disclosure of a new class of lck inhibitors based on the phenylaminoimidazoisoquinolin-9-one showed reasonable cellular activity but did not work in vivo upon oral administration. Our current work highlights the further use of rational drug design and molecular modeling to produce a series of lck inhibitors that demonstrate cellular activity below 100 nM and are as efficacious as cyclosporin A in an in vivo mouse model of anti-CD3-induced IL-2 production.


Assuntos
Benzimidazóis/síntese química , Inibidores Enzimáticos/síntese química , Imunossupressores/síntese química , Isoquinolinas/síntese química , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/antagonistas & inibidores , Administração Oral , Animais , Anticorpos Monoclonais/farmacologia , Benzimidazóis/química , Benzimidazóis/farmacologia , Complexo CD3/imunologia , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Imunossupressores/química , Imunossupressores/farmacologia , Interleucina-2/antagonistas & inibidores , Interleucina-2/biossíntese , Interleucina-2/sangue , Isoquinolinas/química , Isoquinolinas/farmacologia , Células Jurkat , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Relação Estrutura-Atividade
14.
Bioorg Med Chem ; 11(5): 733-40, 2003 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-12538003

RESUMO

The design and synthesis of dipeptidyl disulfides and dipeptidyl benzoylhydrazones as selective inhibitors of the cysteine protease Cathepsin S are described. These inhibitors were expected to form a slowly reversible covalent adduct of the active site cysteine of Cathepsin S. Formation of the initial adduct was confirmed by mass spectral analysis. The nature and mechanism of these adducts was explored. Kinetic analysis of the benzoyl hydrazones indicate that these inhibitors are acting as irreversible inhibitors of Cathepsin S. Additionally, the benzoylhydrazones were shown to be potent inhibitors of Cathepsin S processing of Class II associated invariant peptide both in vitro and in vivo.


Assuntos
Catepsinas/antagonistas & inibidores , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/farmacologia , Dissulfetos/síntese química , Dissulfetos/farmacologia , Hidrazonas/síntese química , Hidrazonas/farmacologia , Animais , Catepsina B/antagonistas & inibidores , Linhagem Celular , Desenho de Fármacos , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Elastase Pancreática/antagonistas & inibidores , Testes de Precipitina , Proteínas Recombinantes/antagonistas & inibidores
15.
J Med Chem ; 45(16): 3394-405, 2002 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12139450

RESUMO

An imidazo[4,5-h]isoquinolin-7,9-dione (1) was identified as an adenosine 5'-triphosphate competitive inhibitor of lck by high throughput screening. Initial structure-activity relationship studies identified the dichlorophenyl ring and the imide NH as important pharmacophores. A binding model was constructed to understand how 1 binds to a related kinase, hck. These results suggested that removing the gem-dimethyl group and flattening the ring would enhance activity. This was realized by converting 1 to the imidazo[4,5-h]isoquinolin-9-one (20), resulting in an 18-fold improvement in potency against lck and a 50-fold increase in potency in a cellular assay.


Assuntos
Inibidores Enzimáticos/síntese química , Imidazóis/síntese química , Isoquinolinas/síntese química , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/antagonistas & inibidores , Animais , Anticorpos/farmacologia , Sítios de Ligação , Complexo CD3/imunologia , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Imidazóis/química , Imidazóis/farmacologia , Interleucina-2/biossíntese , Isoquinolinas/química , Isoquinolinas/farmacologia , Células Jurkat , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Conformação Molecular , Relação Estrutura-Atividade , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA