Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 628(8007): 408-415, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38480883

RESUMO

During development, inflammation or tissue injury, macrophages may successively engulf and process multiple apoptotic corpses via efferocytosis to achieve tissue homeostasis1. How macrophages may rapidly adapt their transcription to achieve continuous corpse uptake is incompletely understood. Transcriptional pause/release is an evolutionarily conserved mechanism, in which RNA polymerase (Pol) II initiates transcription for 20-60 nucleotides, is paused for minutes to hours and is then released to make full-length mRNA2. Here we show that macrophages, within minutes of corpse encounter, use transcriptional pause/release to unleash a rapid transcriptional response. For human and mouse macrophages, the Pol II pause/release was required for continuous efferocytosis in vitro and in vivo. Interestingly, blocking Pol II pause/release did not impede Fc receptor-mediated phagocytosis, yeast uptake or bacterial phagocytosis. Integration of data from three genomic approaches-precision nuclear run-on sequencing, RNA sequencing, and assay for transposase-accessible chromatin using sequencing (ATAC-seq)-on efferocytic macrophages at different time points revealed that Pol II pause/release controls expression of select transcription factors and downstream target genes. Mechanistic studies on transcription factor EGR3, prominently regulated by pause/release, uncovered EGR3-related reprogramming of other macrophage genes involved in cytoskeleton and corpse processing. Using lysosomal probes and a new genetic fluorescent reporter, we identify a role for pause/release in phagosome acidification during efferocytosis. Furthermore, microglia from egr3-deficient zebrafish embryos displayed reduced phagocytosis of apoptotic neurons and fewer maturing phagosomes, supporting defective corpse processing. Collectively, these data indicate that macrophages use Pol II pause/release as a mechanism to rapidly alter their transcriptional programs for efficient processing of the ingested apoptotic corpses and for successive efferocytosis.


Assuntos
Eferocitose , Macrófagos , RNA Polimerase II , Elongação da Transcrição Genética , Animais , Humanos , Masculino , Camundongos , Apoptose , Citoesqueleto/metabolismo , Proteína 3 de Resposta de Crescimento Precoce/deficiência , Proteína 3 de Resposta de Crescimento Precoce/genética , Eferocitose/genética , Concentração de Íons de Hidrogênio , Macrófagos/imunologia , Macrófagos/metabolismo , Neurônios/metabolismo , Fagossomos/metabolismo , RNA Polimerase II/metabolismo , Fatores de Transcrição/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Fatores de Tempo
2.
J Exp Med ; 214(11): 3171-3182, 2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-28855241

RESUMO

Many pathogens deliver virulence factors or effectors into host cells in order to evade host defenses and establish infection. Although such effector proteins disrupt critical cellular signaling pathways, they also trigger specific antipathogen responses, a process termed "effector-triggered immunity." The Gram-negative bacterial pathogen Yersinia inactivates critical proteins of the NF-κB and MAPK signaling cascade, thereby blocking inflammatory cytokine production but also inducing apoptosis. Yersinia-induced apoptosis requires the kinase activity of receptor-interacting protein kinase 1 (RIPK1), a key regulator of cell death, NF-κB, and MAPK signaling. Through the targeted disruption of RIPK1 kinase activity, which selectively disrupts RIPK1-dependent cell death, we now reveal that Yersinia-induced apoptosis is critical for host survival, containment of bacteria in granulomas, and control of bacterial burdens in vivo. We demonstrate that this apoptotic response provides a cell-extrinsic signal that promotes optimal innate immune cytokine production and antibacterial defense, demonstrating a novel role for RIPK1 kinase-induced apoptosis in mediating effector-triggered immunity to circumvent pathogen inhibition of immune signaling.


Assuntos
Apoptose/imunologia , Proteína Serina-Treonina Quinases de Interação com Receptores/imunologia , Infecções por Yersinia pseudotuberculosis/imunologia , Yersinia pseudotuberculosis/imunologia , Animais , Apoptose/genética , Citocinas/imunologia , Citocinas/metabolismo , Resistência à Doença/genética , Resistência à Doença/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/genética , Imunidade Inata/imunologia , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Imunológicos , NF-kappa B/imunologia , NF-kappa B/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Análise de Sobrevida , Yersinia pseudotuberculosis/fisiologia , Infecções por Yersinia pseudotuberculosis/genética , Infecções por Yersinia pseudotuberculosis/microbiologia
3.
J Immunol ; 197(10): 4110-4117, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27733552

RESUMO

Innate immune responses that are crucial for control of infection are often targeted by microbial pathogens. Blockade of NF-κB and MAPK signaling by the Yersinia virulence factor YopJ inhibits cytokine production by innate immune cells but also triggers cell death. This cell death requires RIPK1 kinase activity and caspase-8, which are engaged by TLR4 and the adaptor protein TRIF. Nevertheless, TLR4- and TRIF-deficient cells undergo significant apoptosis, implicating TLR4/TRIF-independent pathways in the death of Yersinia-infected cells. In this article, we report a key role for TNF/TNFR1 in Yersinia-induced cell death of murine macrophages, which occurs despite the blockade of NF-κB and MAPK signaling imposed by Yersinia on infected cells. Intriguingly, direct analysis of YopJ injection revealed a heterogeneous population of injection-high and injection-low cells, and demonstrated that TNF expression came from the injection-low population. Moreover, TNF production by this subpopulation was necessary for maximal apoptosis in the population of highly injected cells, and TNFR-deficient mice displayed enhanced susceptibility to Yersinia infection. These data demonstrate an important role for collaboration between TNF and pattern recognition receptor signals in promoting maximal apoptosis during bacterial infection, and demonstrate that heterogeneity in virulence factor injection and cellular responses play an important role in promoting anti-Yersinia immune defense.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Apoptose , Macrófagos/microbiologia , Macrófagos/fisiologia , Fatores de Necrose Tumoral/metabolismo , Yersiniose/imunologia , Yersinia pseudotuberculosis/patogenicidade , Animais , Proteínas de Bactérias/genética , Caspase 1/metabolismo , Morte Celular , Imunidade Inata , L-Lactato Desidrogenase/metabolismo , Camundongos , Plasmídeos/genética , Transdução de Sinais , Receptor 4 Toll-Like/imunologia , Fatores de Necrose Tumoral/deficiência , Fatores de Necrose Tumoral/imunologia , Yersinia pseudotuberculosis/imunologia
4.
Nat Rev Immunol ; 14(3): 141-53, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24566914

RESUMO

The abundance of innate and adaptive immune cells that reside together with trillions of beneficial commensal microorganisms in the mammalian gastrointestinal tract requires barrier and regulatory mechanisms that conserve host-microbial interactions and tissue homeostasis. This homeostasis depends on the diverse functions of intestinal epithelial cells (IECs), which include the physical segregation of commensal bacteria and the integration of microbial signals. Hence, IECs are crucial mediators of intestinal homeostasis that enable the establishment of an immunological environment permissive to colonization by commensal bacteria. In this Review, we provide a comprehensive overview of how IECs maintain host-commensal microbial relationships and immune cell homeostasis in the intestine.


Assuntos
Células Epiteliais/imunologia , Interações Hospedeiro-Patógeno/imunologia , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Imunidade Adaptativa , Animais , Células Apresentadoras de Antígenos/imunologia , Homeostase/imunologia , Humanos , Imunidade Inata , Intestino Grosso/citologia , Intestino Grosso/imunologia , Intestino Delgado/citologia , Intestino Delgado/imunologia , Linfócitos/imunologia , Camundongos , Transdução de Sinais/imunologia , Simbiose
5.
J Virol ; 87(2): 840-50, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23115291

RESUMO

The NKG2D receptor is expressed on the surface of NK, T, and macrophage lineage cells and plays an important role in antiviral and antitumor immunity. To evade NKG2D recognition, herpesviruses block the expression of NKG2D ligands on the surface of infected cells using a diverse repertoire of sabotage methods. Cowpox and monkeypox viruses have taken an alternate approach by encoding a soluble NKG2D ligand, the orthopoxvirus major histocompatibility complex (MHC) class I-like protein (OMCP), which can block NKG2D-mediated cytotoxicity. This approach has the advantage of targeting a single conserved receptor instead of numerous host ligands that exhibit significant sequence diversity. Here, we show that OMCP binds the NKG2D homodimer as a monomer and competitively blocks host ligand engagement. We have also determined the 2.25-Å-resolution crystal structure of OMCP from the cowpox virus Brighton Red strain, revealing a truncated MHC class I-like platform domain consisting of a beta sheet flanked with two antiparallel alpha helices. OMCP is generally similar in structure to known host NKG2D ligands but has notable variations in regions typically used to engage NKG2D. Additionally, the determinants responsible for the 14-fold-higher affinity of OMCP for human than for murine NKG2D were mapped to a single loop in the NKG2D ligand-binding pocket.


Assuntos
Vírus da Varíola Bovina/química , Subfamília K de Receptores Semelhantes a Lectina de Células NK/química , Proteínas Virais/química , Sequência de Aminoácidos , Animais , Vírus da Varíola Bovina/patogenicidade , Cristalografia por Raios X , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Homologia de Sequência de Aminoácidos , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA