Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 20(1): 176, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30841849

RESUMO

BACKGROUND: Non-human primates (NHPs), particularly macaques, serve as critical and highly relevant pre-clinical models of human disease. The similarity in human and macaque natural disease susceptibility, along with parallel genetic risk alleles, underscores the value of macaques in the development of effective treatment strategies. Nonetheless, there are limited genomic resources available to support the exploration and discovery of macaque models of inherited disease. Notably, there are few public databases tailored to searching NHP sequence variants, and no other database making use of centralized variant calling, or providing genotype-level data and predicted pathogenic effects for each variant. RESULTS: The macaque Genotype And Phenotype (mGAP) resource is the first public website providing searchable, annotated macaque variant data. The mGAP resource includes a catalog of high confidence variants, derived from whole genome sequence (WGS). The current mGAP release at time of publication (1.7) contains 17,087,212 variants based on the sequence analysis of 293 rhesus macaques. A custom pipeline was developed to enable annotation of the macaque variants, leveraging human data sources that include regulatory elements (ENCODE, RegulomeDB), known disease- or phenotype-associated variants (GRASP), predicted impact (SIFT, PolyPhen2), and sequence conservation (Phylop, PhastCons). Currently mGAP includes 2767 variants that are identical to alleles listed in the human ClinVar database, of which 276 variants, spanning 258 genes, are identified as pathogenic. An additional 12,472 variants are predicted as high impact (SnpEff) and 13,129 are predicted as damaging (PolyPhen2). In total, these variants are predicted to be associated with more than 2000 human disease or phenotype entries reported in OMIM (Online Mendelian Inheritance in Man). Importantly, mGAP also provides genotype-level data for all subjects, allowing identification of specific individuals harboring alleles of interest. CONCLUSIONS: The mGAP resource provides variant and genotype data from hundreds of rhesus macaques, processed in a consistent manner across all subjects ( https://mgap.ohsu.edu ). Together with the extensive variant annotations, mGAP presents unprecedented opportunity to investigate potential genetic associations with currently characterized disease models, and to uncover new macaque models based on parallels with human risk alleles.


Assuntos
Biologia Computacional/métodos , Variação Genética , Genótipo , Fenótipo , Animais , Modelos Animais de Doenças , Humanos , Armazenamento e Recuperação da Informação , Internet , Macaca mulatta
2.
J Proteomics ; 186: 71-82, 2018 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-30012420

RESUMO

Atrazine (ATZ), the second most commonly used herbicide in the United States, is an endocrine disrupting chemical linked to cancer and a common drinking water contaminant. This study further investigates ATZ-related developmental toxicity by testing the following hypotheses in zebrafish: the effects of embryonic ATZ exposure are dependent on timing of exposure; embryonic ATZ exposure alters brain development and function; and embryonic ATZ exposure changes protein abundance in carcinogenesis-related pathways. After exposing embryos to 0, 0.3, 3, or 30 parts per billion (ppb) ATZ, we monitored the expression of cytochrome P450 family 17 subfamily A member 1 (cyp17a1), glyoxalase I (glo1), ring finger protein 14 (rnf14), salt inducible kinase 2 (sik2), tetratricopeptide domain 3 (ttc3), and tumor protein D52 like 1 (tpd52l1) at multiple embryonic time points to determine normal expression and if ATZ exposure altered expression. Only cyp17a1 had normal dynamic expression, but ttc3 and tpd52l1 had ATZ-related expression changes before 72 h. Larvae exposed to 0.3 ppb ATZ had increased brain length, while larvae exposed to 30 ppb ATZ were hypoactive. Proteomic analysis identified altered protein abundance in pathways related to cellular function, neurodevelopment, and genital-tract cancer. The results indicate embryonic ATZ toxicity involves interactions of multiple pathways. SIGNIFICANCE: This is the first report of proteomic alterations following embryonic exposure to atrazine, an environmentally persistent pesticide and common water contaminant. Although the transcriptomic alterations in larval zebrafish with embryonic atrazine exposure have been reported, neither the time at which gene expression changes occur nor the resulting proteomic changes have been investigated. This study seeks to address these knowledge gaps by evaluating atrazine's effect on gene expression through multiple time points during embryogenesis, and correlating changes in gene expression to pathological alterations in brain length and functional changes in behavior. Finally, pathway analysis of the proteomic alterations identifies connections between the molecular changes and functional outcomes associated with embryonic atrazine exposure.


Assuntos
Atrazina/farmacologia , Embrião não Mamífero/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteômica , Animais , Atrazina/toxicidade , Encéfalo/crescimento & desenvolvimento , Relação Dose-Resposta a Droga , Desenvolvimento Embrionário , Disruptores Endócrinos/farmacologia , Disruptores Endócrinos/toxicidade , Herbicidas/farmacologia , Herbicidas/toxicidade , Larva/efeitos dos fármacos , Proteínas/efeitos dos fármacos , Poluentes Químicos da Água/farmacologia , Peixe-Zebra/embriologia
3.
Front Genet ; 5: 268, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25147559

RESUMO

The relationship between ionizing radiation (IR) and carcinogenesis is long established, but recently the association between IR and other diseases is starting to be recognized. Currently, there is limited information on the genetic mechanisms governing the role of IR in non-cancer related adverse health effects and in regards to an early developmental exposure. In this study, zebrafish embryos were exposed to a range of IR doses (0, 1, 2, 5, 10 Gy) at 26 h post fertilization (hpf). No significant increase in mortality or hatching rate was observed, but a significant decrease in total larval length, head length, and eye diameter was observed in the 10 Gy dose. Transcriptomic analysis was conducted at 120 hpf to compare gene expression profiles between the control and highest IR dose at which no significant differences were observed in morphological measurements (5 Gy). 253 genes with well-established function or orthology to human genes were significantly altered. Gene ontology and molecular network analysis revealed enrichment of genes associated with cardiovascular and neurological development, function, and disease. Expression of a subset of genetic targets with an emphasis on those associated with the cardiovascular system was assessed using Quantitative PCR (qPCR) to confirm altered expression at 5 Gy and then to investigate alterations at lower doses (1 and 2 Gy). Strong correlation between microarray and qPCR expression values was observed, but zebrafish exposed to 1 or 2 Gy resulted in a significant expression alteration in only one of these genes (LIN7B). Moreover, heart rate was analyzed through 120 hpf following IR dosing at 26 hpf. A significant decrease in heart rate was observed at 10 Gy, while a significant increase in heart rate was observed at 1, 2, and 5 Gy. Overall these findings indicate IR exposure at doses below those that induce gross morphological changes alters heart rate and expression of genes associated with cardiovascular and neurological functions.

4.
Toxicol Sci ; 132(2): 458-66, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23358194

RESUMO

Atrazine, a herbicide commonly applied to agricultural areas and a common contaminant of potable water supplies, is implicated as an endocrine-disrupting chemical (EDC) and potential carcinogen. Studies show that EDCs can cause irreversible changes in tissue formation, decreased reproductive potential, obesity, and cancer. The U.S. Environmental Protection Agency considers an atrazine concentration of ≤ 3 ppb in drinking water safe for consumption. The specific adverse human health effects associated with a developmental atrazine exposure and the underlying genetic mechanisms of these effects are not well defined. In this study, zebrafish embryos were exposed to a range of atrazine concentrations to establish toxicity. Morphological, transcriptomic, and protein alterations were then assessed at 72h postfertilization following developmental atrazine exposure at 0, 0.3, 3, or 30 ppb. A significant increase in head length was observed in all three atrazine treatments. Transcriptomic profiles revealed 21, 62, and 64 genes with altered expression in the 0.3, 3, and 30 ppb atrazine treatments, respectively. Altered genes were associated with neuroendocrine and reproductive system development, function, and disease; cell cycle control; and carcinogenesis. There was a significant overlap (42 genes) between the 3 and 30 ppb differentially expressed gene lists, with two of these genes (CYP17A1 and SAMHD1) present in all three atrazine treatments. Increased transcript levels were translated to significant upregulation in protein expression. Overall, this study identifies genetic and molecular targets altered in response to a developmental atrazine exposure to further define the biological pathways and mechanisms of toxicity.


Assuntos
Atrazina/toxicidade , Ciclo Celular/efeitos dos fármacos , Transformação Celular Neoplásica , Herbicidas/toxicidade , Sistemas Neurossecretores/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Transcriptoma , Animais , Peixe-Zebra
5.
Zebrafish ; 6(4): 355-60, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19916830

RESUMO

The zebrafish system has been established as a useful model for the study of carcinogenesis. The cytogenetic characterization of the genome is vital for furthering our understanding of the progression of the disease. Establishing a basic description of the zebrafish chromosomal karyotype and markers for each specific chromosome permitted the first cytogenetic characterization of the reference genome and the genome of cancer models. As the field of cancer cytogenetics is highly dependent on technology, each advance in technique and methodology has resulted in a corresponding wave of discoveries. We have witnessed great improvement in the resolution of the assays allowing for more detailed characterization of cytogenetic abnormalities, including the efficient and accurate identification of DNA copy number alterations of specific chromosomal regions. Herein, we will discuss major advancements in the field of cytogenetics, along with examples of how these technologies have been utilized in studies to characterize zebrafish cancer disease models. Finally, we will discuss the current state of the field and how microarray technology are being implemented to scan the whole genome at high resolution for DNA copy number alterations observed in various cancer types throughout the progression of the disease.


Assuntos
Análise Citogenética , Neoplasias/genética , Peixe-Zebra/genética , Animais , Modelos Animais de Doenças , Dosagem de Genes , Humanos , Análise de Sequência com Séries de Oligonucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA