Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neurosurg ; 138(5): 1291-1301, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36115048

RESUMO

OBJECTIVE: The profound immunosuppression found in glioblastoma (GBM) patients is a critical barrier to effective immunotherapy. Multiple mechanisms of tumor-mediated immune suppression exist, and the induction of immunosuppressive monocytes such as myeloid-derived suppressor cells (MDSCs) is increasingly appreciated as a key part of this pathology. GBM-derived extracellular vesicles (EVs) can induce the formation of MDSCs. The authors sought to identify the molecular consequences of these interactions in myeloid cells in order to identify potential targets that could pharmacologically disrupt GBM EV-monocyte interaction as a means to ameliorate tumor-mediated immune suppression. Heparin-sulfate proteoglycans (HSPGs) are a general mechanism by which EVs come into association with their target cells, and soluble heparin has been shown to interfere with EV-HSPG interactions. The authors sought to assess the efficacy of heparin treatment for mitigating the effects of GBM EVs on the formation of MDSCs. METHODS: GBM EVs were collected from patient-derived cell line cultures via staged ultracentrifugation and cocultured with monocytes collected from apheresis cones from healthy blood donors. RNA was isolated from EV-conditioned and unconditioned monocytes after 72 hours of coculture, and RNA-sequencing analysis performed. For the heparin treatment studies, soluble heparin was added at the time of EV-monocyte coculture and flow cytometry analysis was performed 72 hours later. After the initial EV-monocyte coculture period, donor-matched T-cell coculture studies were performed by adding fluorescently labeled and stimulated T cells for 5 days of coculture. RESULTS: Transcriptomic analysis of GBM EV-treated monocytes demonstrated downregulation of several important immunological and metabolic pathways, with upregulation of the pathways associated with synthesis of cholesterol and HSPG. Heparin treatment inhibited association between GBM EVs and monocytes in a dose-dependent fashion, which resulted in a concomitant reduction in MDSC formation (p < 0.01). The authors further demonstrated that reduced MDSC formation resulted in a partial rescue of immune suppression, as measured by effects on activated donor-matched T cells (p < 0.05). CONCLUSIONS: The authors demonstrated that GBM EVs induce broad but reproducible reprogramming in monocytes, with enrichment of pathways that may portend an immunosuppressive phenotype. The authors further demonstrated that GBM EV-monocyte interactions are potentially druggable targets for overcoming tumor-mediated immune suppression, with heparin inhibition of EV-monocyte interactions demonstrating proof of principle.


Assuntos
Vesículas Extracelulares , Glioblastoma , Humanos , Monócitos/metabolismo , Glioblastoma/patologia , Proteoglicanas de Heparan Sulfato/metabolismo , Vesículas Extracelulares/metabolismo , RNA/metabolismo , Heparina
2.
Regen Med ; 17(11): 805-817, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36193669

RESUMO

Aim: To investigate the regenerative effects of a platelet-derived purified exosome product (PEP) on human endometrial cells. Materials & methods: Endometrial adenocarcinoma cells (HEC-1A), endometrial stromal cells (T HESC) and menstrual blood-derived stem cells (MenSC) were assessed for exosome absorption and subsequent changes in cell proliferation and wound healing properties over 48 h. Results: Cell proliferation increased in PEP treated T HESC (p < 0.0001) and MenSC (p < 0.001) after 6 h and in HEC-1A (p < 0.01) after 12 h. PEP improved wound healing after 6 h in HEC-1A (p < 0.01) and MenSC (p < 0.0001) and in T HESC between 24 and 36 h (p < 0.05). Conclusion: PEP was absorbed by three different endometrial cell types. PEP treatment increased cell proliferation and wound healing capacity.


The uterus has a remarkable ability to heal itself. Every month the inside lining of the uterus grows in preparation for pregnancy and sheds if no pregnancy occurs. Unfortunately, this cycle of growth, shedding and repair can be injured and lead to menstrual changes, pain or even infertility. In this study, we looked how special cell messengers ­ called exosomes ­ could help uterine cells. Exosomes are special messengers that contain substances to help the body heal and regenerate injured cells and tissues. We obtained exosomes created from human transfusion-grade platelets. We studied the exosomes' effects in three different cell types that all are important inside the uterine lining. Specifically, we studied the ability of the exosomes to help cells proliferate and migrate into a wound. In this study, exosomes were recognized by the human endometrial cells and were absorbed. Once they were inside the cells, they increased cell proliferation as well as the ability of the cells to heal a scratch wound. Furthermore, the more exosomes we presented to the cells, the more the cells were able to proliferate and move into a wound for healing. These findings lay the groundwork for future studies in animal models of uterine injury.


Assuntos
Exossomos , Proliferação de Células , Endométrio , Feminino , Humanos , Células Estromais/metabolismo , Cicatrização
3.
Neurooncol Adv ; 4(1): vdac089, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967100

RESUMO

Background: Glioblastoma (GBM) has poor prognosis despite aggressive treatment. Dendritic cell (DC) vaccines are promising, but widespread clinical use has not been achieved, possibly reflecting manufacturing issues of antigen choice and DC potency. We previously optimized vaccine manufacture utilizing allogeneic human GBM tumor cell lysate and potent, mature autologous DCs. Here, we report a phase I study using this optimized DC vaccine in combination with standard therapy. Methods: Following surgical resection and radiation with concurrent temozolomide (TMZ), newly diagnosed adult GBM patients received intradermal DC vaccines plus TMZ. Primary endpoints were safety and feasibility. Immune and treatment responses were recorded. Results: Twenty-one patients were enrolled in this study. One progressed between leukapheresis and vaccine manufacture. Twenty patients received treatment per protocol. Vaccine doses (≥15) were generated following a single leukapheresis for each patient. No dose-limiting vaccine toxicities were encountered. One patient had symptomatic, histologically proven pseudoprogression. Median progression-free survival was 9.7 months. Median overall survival was 19 months. Overall survival was 25% at 2 years and 10% at 4 years. One patient remains progression-free 5 years after enrollment. Specific CD8 T-cell responses for the tumor-associated antigen gp100 were seen post-vaccination. Patients entered the trial with a leukocyte deficit compared to healthy donors which partly normalized over the course of therapy. Conclusions: This vaccine platform is safe and highly feasible in combination with standard therapy for newly diagnosed patients. Imaging, histological, survival, and immunological data suggest a positive biological response to therapy that warrants further investigation.

4.
J Neurooncol ; 156(2): 269-279, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34984645

RESUMO

BACKGROUND: Medulloblastoma (MB) and diffuse infiltrative pontine glioma (DIPG) are malignant pediatric tumors. Extracellular vesicles (EVs) and their bioactive cargoes have been implicated in tumorigenesis. Most studies have focused on adult tumors, therefore the role of EVs and the noncoding RNA (ncRNA) landscape in pediatric brain tumors is not fully characterized. The overall aim of this pilot study was to isolate EVs from MB and DIPG patient-derived cell lines and to explore the small ncRNA transcriptome. METHODS: EVs from 3 DIPG and 4 MB patient-derived cell lines were analyzed. High-throughput next generation sequencing interrogated the short non-coding RNA (ncRNA) transcriptome. Known and novel miRNAs were quantified. Differential expression analysis, in silico target prediction, and functional gene enrichment were performed. RESULTS: EV secretomes from MB and DIPG patient-derived cell lines demonstrated discrete ncRNA biotypes. Notably, miRNAs were depleted and Y RNAs were enriched in EV samples. Hierarchical cluster analysis revealed high discrimination in miRNA expression between DIPG and MB cell lines and RNA-Seq identified novel miRNAs not previously implicated in MB or DIPG pathogenesis. Known and putative target genes of dysregulated miRNAs were identified. Functional annotation analysis of the target genes for differentially expressed EV-and parental-derived miRNAs revealed significant cancer-related pathway involvement. CONCLUSIONS: This hypothesis-generating study demonstrated that pediatric brain tumor-derived cell lines secrete EVs comprised of various ncRNA cargoes. Validation of these findings in patient samples may provide new insights into the pediatric brain tumor microenvironment and identification of novel therapeutic candidates.


Assuntos
Neoplasias Encefálicas , Vesículas Extracelulares , MicroRNAs , Pequeno RNA não Traduzido , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Criança , Vesículas Extracelulares/metabolismo , Humanos , MicroRNAs/metabolismo , Projetos Piloto , Pequeno RNA não Traduzido/metabolismo
5.
Neurooncol Adv ; 2(1): vdaa105, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33134920

RESUMO

BACKGROUND: Glioblastoma, the most common primary malignant brain tumor, is nearly universally fatal by 5 years. Dendritic cell vaccines are promising but often limited clinically by antigen choice, dendritic cell potency, and/or manufacturing yield. We optimized vaccine manufacture, generating potent mature autologous dendritic cells pulsed with allogeneic glioblastoma lysates. METHODS: Platelet lysate-based supplement was used to establish human glioblastoma cell lines. Phenotype and genotype were assessed. An improved culture technique to generate mature dendritic cells from glioblastoma patients' monocytes was developed. The ability of T cells stimulated with autologous dendritic cells pulsed with allogeneic glioblastoma cell lysate to kill HLA-A2-matched glioblastoma cells was assessed. RESULTS: Glioblastoma cell lines established with platelet lysate supplement grew faster and expressed more stem-like markers than lines grown in neural stem cell media or in the presence of serum. They expressed a variety of glioma-associated antigens and had genomic abnormalities characteristic of glioblastoma stable up to 15 doublings. Unlike standard culture techniques, our optimized technique produced high levels of mature dendritic cells from glioblastoma patients' monocytes. Autologous T cells stimulated with mature dendritic cells pulsed with allogeneic glioblastoma cell line lysate briskly killed HLA-A2-matched glioblastoma cells. CONCLUSIONS: Our glioblastoma culture method provides a renewable source for a broad spectrum glioblastoma neoantigens while our dendritic cell culture technique results in more mature dendritic cells in glioblastoma patients than standard techniques. This broadly applicable strategy could be easily integrated into patient care.

6.
Neuro Oncol ; 22(7): 967-978, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32080744

RESUMO

BACKGROUND: Immunosuppression in glioblastoma (GBM) is an obstacle to effective immunotherapy. GBM-derived immunosuppressive monocytes are central to this. Programmed cell death ligand 1 (PD-L1) is an immune checkpoint molecule, expressed by GBM cells and GBM extracellular vesicles (EVs). We sought to determine the role of EV-associated PD-L1 in the formation of immunosuppressive monocytes. METHODS: Monocytes collected from healthy donors were conditioned with GBM-derived EVs to induce the formation of immunosuppressive monocytes, which were quantified via flow cytometry. Donor-matched T cells were subsequently co-cultured with EV-conditioned monocytes in order to assess effects on T-cell proliferation. PD-L1 constitutive overexpression or short hairpin RNA-mediated knockdown was used to determined the role of altered PD-L1 expression. RESULTS: GBM EVs interact with both T cells and monocytes but do not directly inhibit T-cell activation. However, GBM EVs induce immunosuppressive monocytes, including myeloid-derived suppressor cells (MDSCs) and nonclassical monocytes (NCMs). MDSCs and NCMs inhibit T-cell proliferation in vitro and are found within GBM in situ. EV PD-L1 expression induces NCMs but not MDSCs, and does not affect EV-conditioned monocytes T-cell inhibition. CONCLUSION: These findings indicate that GBM EV-mediated immunosuppression occurs through induction of immunosuppressive monocytes rather than direct T-cell inhibition and that, while PD-L1 expression is important for the induction of specific immunosuppressive monocyte populations, immunosuppressive signaling mechanisms through EVs are complex and not limited to PD-L1.


Assuntos
Vesículas Extracelulares , Glioblastoma , Células Supressoras Mieloides , Antígeno B7-H1 , Humanos , Monócitos
7.
J Neurooncol ; 146(2): 253-263, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31912278

RESUMO

INTRODUCTION: Like all nucleated cells, glioblastoma (GBM) cells shed small membrane-encapsulated particles called extracellular vesicles (EVs). EVs can transfer oncogenic components and promote tumor growth by transferring short non-coding RNAs, altering target cell gene expression. Furthermore, GBM-derived EVs can be detected in blood and have potential to serve as liquid biopsies. METHODS: EVs were harvested from culture supernatants from human GBM cell lines, purified via sequential centrifugation, and quantified by nanoparticle tracking. RNA was isolated and short non-coding RNA was sequenced. Data was analyzed via the OASIS-2.0 platform using HG38. MirTarBase and MirDB interrogated validated/predicted miRNA-gene interactions respectively. RESULTS: Many short non-coding RNA's were identified within GBM EV's. In keeping with earlier reports utilizing GBM EV micro-RNA (miRNA) arrays, these included abundant micro-RNA's including miR-21. However, RNA sequencing revealed a total of 712 non-coding RNA sequences most of which have not been associated with GBM EV's previously. These included many RNA species (piRNA, snoRNA, snRNA, rRNA and yRNAs) in addition to miRNA's. miR-21-5p, let-7b-5p, miR-3182, miR-4448, let-7i-5p constituted highest overall expression. Top genes targeted by non-coding RNA's were highly conserved and specific for cell cycle, PI3K/Akt signaling, p53 and Glioma curated KEGG pathways. CONCLUSIONS: Next generation short non-coding RNA sequencing on GBM EV's validates findings from earlier studies using miRNA arrays but also demonstrates expression of many additional non-coding RNA sequences and classes previously unassociated with GBM. This may yield important insights into pathophysiology, point to new therapeutic targets, and help develop new biomarkers for disease burden and treatment response.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Vesículas Extracelulares/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , MicroRNAs/genética , Pequeno RNA não Traduzido/genética , Idoso , Neoplasias Encefálicas/patologia , Vesículas Extracelulares/patologia , Feminino , Glioblastoma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Taxa de Sobrevida , Células Tumorais Cultivadas
8.
Front Oncol ; 9: 651, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31380286

RESUMO

Gliomas including glioblastoma (GBM) are the most common primary malignant brain tumors. Glioma extracellular vesicles (EVs) including exosomes have biological effects (e.g., immunosuppression) and contain tumor-specific cargo that could facilitate liquid biopsies. We aimed to develop a simple, reproducible technique to isolate plasma exosomes in glioma patients. Glioma patients' and normal donors' plasma exosomes underwent brief centrifugation to remove cells/debris followed by serial density gradient ultracentrifugation (DGU). EV size/concentration was determined by nanoparticle tracking. Protein cargo was screened by array, western blot, and ELISA. Nanoscale flow cytometry analysis quantified exosome and microvesicle populations pre- and post-DGU. One-step DGU efficiently isolates exosomes for nanoparticle tracking. Wild type isocitrate dehydrogenase glioma patients' (i.e., more aggressive tumors) plasma exosomes are smaller but higher concentration than normal donors. A second DGU efficiently concentrates exosomes for subsequent cargo analysis but results in vesicle aggregation that skews nanoparticle tracking. Cytokines and co-stimulatory molecules are readily detected but appeared globally reduced in GBM patients' exosomes. Surprisingly, immunosuppressive programmed death-ligand 1 (PD-L1) is present in both patients' and normal donors' exosomes. Nanoscale flow cytometry confirms efficient exosome (<100 nm) isolation post-DGU but also demonstrates increase in microvesicles (>100 nm) in GBM patients' plasma pre-DGU. Serial DGU efficiently isolates plasma exosomes with distinct differences between GBM patients and normal donors, suggesting utility for non-invasive biomarker assessment. Initial results suggest global immunosuppression rather than increased circulating tumor-derived immunosuppressive exosomes, though further assessment is needed. Increased glioma patients' plasma microvesicles suggest these may also be a key source for biomarkers.

9.
PLoS One ; 14(7): e0220569, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31361777

RESUMO

Abnormal activation of signal transducer and activator of transcription 3 (STAT3) transcription factor has been observed in many human cancers with roles in tumor initiation, progression, drug resistance, angiogenesis and immunosuppression. STAT3 is constitutively activated in a variety of cancers including adult high grade gliomas (aHGGs) such as glioblastoma (GBM), and pediatric high grade gliomas (pHGG). Inhibiting STAT3 is a promising target-specific chemotherapeutic strategy for tumors with aberrant STAT3 signaling. Here we investigated the antitumor effects of novel pyrazole-based STAT3 pathway inhibitors named MNS1 (Mayo Neurosurgery 1) in both pediatric and adult HGG tumor cells. MNS1 compounds selectively decreased cell viability and proliferation in patient-derived HGG cells with minimal toxicity on normal human astrocytes. These inhibitors selectively blocked IL-6-induced STAT3 phosphorylation and nuclear localization of pSTAT3 without affecting other signaling molecules including Akt, STAT1, JAK2 or ERK1/2 phosphorylation. Functional analysis showed that MNS1 compounds induced apoptosis and decrease tumor migration. The anti-tumor effects extended into a murine pHGG (diffuse intrinsic pontine glioma) patient derived xenograft, and systemic toxicity was not evident during dose escalation in mice. These results support further development of STAT3 inhibitors for both pediatric and adult HGG.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioma/patologia , Pirazóis/química , Pirazóis/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Apoptose , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Proliferação de Células , Feminino , Glioma/tratamento farmacológico , Glioma/metabolismo , Humanos , Camundongos , Camundongos Nus , Fosforilação , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Front Oncol ; 9: 92, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30873381

RESUMO

Diffuse Midline Gliomas with Histone 3-Lysine-27-Methionine (H3K27M) mutation constitute the majority of Diffuse Intrinsic Pontine Glioma (DIPG), which is the most aggressive form of pediatric glioma with a dire prognosis. DIPG are lethal tumors found in younger children with a median survival <1 year from diagnosis. Discovery of the characteristic H3K27M mutations offers opportunity and hope for development of targeted therapies for this deadly disease. The H3K27M mutation, likely through epigenetic alterations in specific H3 lysine trimethylation levels and subsequent gene expression, plays a significant role in pathogenesis of DIPG. Animal models accurately depicting molecular characteristics of H3K27M DIPG are important to elucidate underlying pathologic events and for preclinical drug evaluation. Here we review the past and present DIPG models and describe our efforts developing patient derived cell lines and xenografts from pretreated surgical specimens. Pre-treated surgical samples retain the characteristic genomic and phenotypic hallmarks of DIPG and establish orthotopic tumors in the mouse brainstem that recapitulate radiographic and morphological features of the original human DIPG tumor. These models that contain the H3K27M mutation constitute a valuable tool to further study this devastating disease and ultimately may uncover novel therapeutic vulnerabilities.

11.
Sci Rep ; 8(1): 14110, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30237409

RESUMO

Vascular dysfunction and insulin resistance (IR) are associated with obstructive sleep apnea (OSA), which is characterized by frequent episodes of nocturnal intermittent hypoxia (IH). While it is recognized that the balance between vasoconstrictive (endothelin-1) and vasodilatory molecules (nitric oxide, NO) determine vascular profile, molecular mechanisms contributing to vascular dysfunction and IR in OSA are not completely understood. Caveolin-1 is a membrane protein which regulates endothelial nitric oxide synthase (eNOS) activity which is responsible for NO generation and cellular insulin-signaling. Hence, we examined the effects of IH on caveolin-1, eNOS, and endothelin-1 in human coronary artery endothelial cells in the context of IR. Chronic 3-day IH exposure up-regulated caveolin-1 and endothelin-1 expression while reducing NO. Also, IH altered insulin-mediated activation of AKT but not ERK resulting in increased endothelin-1 transcription. Similarly, caveolin-1 overexpression attenuated basal and insulin-stimulated NO synthesis along with impaired insulin-dependent activation of AKT and eNOS, with no effect on insulin-stimulated ERK1/2 phosphorylation and endothelin-1 transcription. Our data suggest that IH contributes to a vasoconstrictive profile and to pathway-selective vascular IR, whereby insulin potentiates ET-1 expression. Moreover, IH may partly mediate its effects on NO and insulin-signaling via upregulating caveolin-1 expression.


Assuntos
Hipóxia Celular/fisiologia , Células Endoteliais/metabolismo , Insulina/farmacologia , Transdução de Sinais/fisiologia , Caveolina 1/metabolismo , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Endotelina-1/metabolismo , Humanos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
PLoS One ; 12(6): e0179012, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28666020

RESUMO

Glioblastoma is the most common primary tumor of the brain and has few long-term survivors. The local and systemic immunosuppressive environment created by glioblastoma allows it to evade immunosurveillance. Myeloid-derived suppressor cells (MDSCs) are a critical component of this immunosuppression. Understanding mechanisms of MDSC formation and function are key to developing effective immunotherapies. In this study, we developed a novel model to reliably generate human MDSCs from healthy-donor CD14+ monocytes by culture in human glioma-conditioned media. Monocytic MDSC frequency was assessed by flow cytometry and confocal microscopy. The resulting MDSCs robustly inhibited T cell proliferation. A cytokine array identified multiple components of the GCM potentially contributing to MDSC generation, including Monocyte Chemoattractive Protein-1, interleukin-6, interleukin-8, and Macrophage Migration Inhibitory Factor (MIF). Of these, Macrophage Migration Inhibitory Factor is a particularly attractive therapeutic target as sulforaphane, a naturally occurring MIF inhibitor derived from broccoli sprouts, has excellent oral bioavailability. Sulforaphane inhibits the transformation of normal monocytes to MDSCs by glioma-conditioned media in vitro at pharmacologically relevant concentrations that are non-toxic to normal leukocytes. This is associated with a corresponding increase in mature dendritic cells. Interestingly, sulforaphane treatment had similar pro-inflammatory effects on normal monocytes in fresh media but specifically increased immature dendritic cells. Thus, we have used a simple in vitro model system to identify a novel contributor to glioblastoma immunosuppression for which a natural inhibitor exists that increases mature dendritic cell development at the expense of myeloid-derived suppressor cells when normal monocytes are exposed to glioma conditioned media.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Isotiocianatos/farmacologia , Células Supressoras Mieloides/efeitos dos fármacos , Neoplasias Encefálicas/imunologia , Antígeno CD11b/imunologia , Hipóxia Celular , Linhagem Celular Tumoral , Meios de Cultivo Condicionados , Fucosiltransferases/imunologia , Glioblastoma/imunologia , Humanos , Antígenos CD15/imunologia , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/patologia , Sulfóxidos
13.
Neuro Oncol ; 17(7): 978-91, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25537019

RESUMO

BACKGROUND: Patients with glioblastoma multiforme (GBM) exhibit marked intratumoral and systemic immunosuppression. GBM is heavily infiltrated with monocytic cells. Monocytes contacting GBM cells develop features of immunosuppressive myeloid-derived suppressor cells (MDSCs), which are elevated in GBM patients. Therefore, we hypothesized that circulating MDSC levels could be raised in vivo by increasing glioma-associated macrophages. METHODS: GL261-luciferase glioma was implanted intracranially in C57BL/6 mice with or without additional normal syngeneic CD11b+ monocytes. Tumor growth and intratumoral and systemic MDSC (CD11b+/Gr-1+) levels were determined. Green fluorescent protein (GFP)-transgenic monocytes were coinjected intracranially with GL261-luciferase cells. GFP+ cell frequency among splenic and bone marrow MDSCs was determined. Impact of increased MDSC's on spontaneous immune responses to tumor cells expressing a model antigen (ovalbumin [OVA]) was determined. RESULTS: Tumors grew faster and MDSC's were increased in tumor, spleen, and bone marrow in mice receiving GL261-Luc plus monocytes. Many (30%-50%) systemic MDSC's were GFP+ in mice receiving intracranial tumor plus GFP-transgenic monocytes, suggesting that they originated from glioma-associated monocytes. Tumor-infiltrating OVA-specific CD8+ T cells were markedly reduced in mice receiving GL261-OVA and monocytes compared with mice receiving GL261-OVA alone. CONCLUSIONS: Increasing glioma-associated macrophages in intracranial GL261 glioma decreases survival and markedly increases intratumoral and systemic MDSC's, many of which originate directly from glioma-associated macrophages. This is associated with decreased spontaneous immune responses to a model antigen. To our knowledge, this is the first evidence in cancer that systemic MDSC's can arise directly from normal monocytes that have undergone intratumoral immunosuppressive education.


Assuntos
Neoplasias Encefálicas/fisiopatologia , Glioma/fisiopatologia , Células Mieloides/fisiologia , Animais , Células da Medula Óssea/fisiologia , Neoplasias Encefálicas/imunologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Glioma/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/imunologia , Baço/fisiopatologia
14.
J Neurooncol ; 111(1): 11-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23086431

RESUMO

Positron emission tomography (PET) imaging with the amino acid tracer 6-(18)F-fluoro-L-3,4-dihydroxy-phenylalanine ((18)F-DOPA) may provide better spatial and functional information in human gliomas than CT or MRI alone. The L-type amino acid transporter 1 (LAT1) is responsible for membrane transport of large neutral amino acids in normal cells. This study assessed the relationship between LAT1 expression and (18)F-DOPA uptake in human astrocytomas. Endogenous LAT1 expression was measured in established glioblastoma (GBM) cell lines and primary GBM xenografts using Western blotting and quantitative reverse transcription polymerase chain reaction (qRT-PCR). Uptake of (18)F-DOPA was approximated in vitro using (3)H-L-DOPA as an analog. Uptake of (3)H-L-DOPA was assessed in cells expressing LAT1 shRNA or LAT1 siRNA and compared to non-targeted (NT) control shRNA or siRNA sequences, respectively. To demonstrate the clinical relevance of these findings, LAT1 immunofluorescence staining was compared with corresponding regions of (18)F-DOPA PET uptake in patients with newly diagnosed astrocytomas. LAT1 mRNA and protein expression varies in GBM, and the extent of (3)H-L-DOPA uptake was positively correlated with endogenous LAT1 expression. Stable shRNA-mediated LAT1 knockdown in T98 and GBM28 reduced (3)H-L-DOPA uptake relative to NT shRNA by 57 (P < 0.0001) and 52 % (P < 0.001), respectively. Transient siRNA-mediated LAT1 knockdown in T98 reduced (3)H-L-DOPA uptake relative to NT siRNA up to 68 % (P < 0.01). In clinical samples, LAT1 expression positively correlated with (18)F-DOPA PET uptake (P = 0.04). Expression of LAT1 is strongly associated with (3)H-L-DOPA uptake in vitro and (18)F-DOPA uptake in patient biopsy samples. These results define LAT1 as a key determinant of (18)F-DOPA accumulation in GBM.


Assuntos
Neoplasias Encefálicas/metabolismo , Di-Hidroxifenilalanina/análogos & derivados , Radioisótopos de Flúor , Glioma/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Animais , Transporte Biológico , Western Blotting , Neoplasias Encefálicas/patologia , Di-Hidroxifenilalanina/farmacocinética , Imunofluorescência , Glioma/patologia , Humanos , Técnicas Imunoenzimáticas , Transportador 1 de Aminoácidos Neutros Grandes/química , Transportador 1 de Aminoácidos Neutros Grandes/genética , Camundongos , Gradação de Tumores , Tomografia por Emissão de Pósitrons , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
15.
Circ Res ; 111(5): 599-603, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22730441

RESUMO

RATIONALE: The link between obesity, hyperleptinemia, and development of cardiovascular disease is not completely understood. Increases in leptin have been shown to impair leptin signaling via caveolin-1-dependent mechanisms. However, the role of hyperleptinemia versus impaired leptin signaling in adipose tissue is not known. OBJECTIVE: To determine the presence and significance of leptin-dependent increases in adipose tissue caveolin-1 expression in humans. METHODS AND RESULTS: We designed a longitudinal study to investigate the effects of increases in leptin on adipose tissue caveolin-1 expression during weight gain in humans. Ten volunteers underwent 8 weeks of overfeeding, during which they gained an average weight of 4.1±1.4 kg, with leptin increases from 7±3.8 to 12±5.7 ng/mL. Weight gain also resulted in changes in adipose tissue caveolin-1 expression, which correlated with increases in leptin (rho=0.79, P=0.01). In cultured human white preadipocytes, leptin increased caveolin-1 expression, which in turn impaired leptin cellular signaling. Functionally, leptin decreased lipid accumulation in differentiating human white preadipocytes, which was prevented by caveolin-1 overexpression. Further, leptin decreased perilipin and fatty acid synthase expression, which play an important role in lipid storage and biogenesis. CONCLUSIONS: In healthy humans, increases in leptin, as seen with modest weight gain, may increase caveolin-1 expression in adipose tissue. Increased caveolin-1 expression in turn impairs leptin signaling and attenuates leptin-dependent lowering of intracellular lipid accumulation. Our study suggests a leptin-dependent feedback mechanism that may be essential to facilitate adipocyte lipid storage during weight gain.


Assuntos
Tecido Adiposo Branco/metabolismo , Caveolina 1/metabolismo , Hiperfagia/metabolismo , Leptina/metabolismo , Transdução de Sinais/fisiologia , Aumento de Peso/fisiologia , Adipócitos Brancos/metabolismo , Tecido Adiposo Branco/citologia , Adulto , Células Cultivadas , Retroalimentação Fisiológica/fisiologia , Feminino , Humanos , Metabolismo dos Lipídeos/fisiologia , Estudos Longitudinais , Masculino , Células-Tronco/metabolismo , Adulto Jovem
16.
Atherosclerosis ; 217(2): 499-502, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21074769

RESUMO

OBJECTIVE: To determine the role of hyperleptinemia on caveolin-1 expression and leptin signaling. METHODS: Endothelial cells are critical to atherosclerosis development; therefore we investigated hyperleptinemia in cultured vascular endothelial cells. Dose-dependent effect of leptin on caveolin-1 expression was determined by Western blot analysis. Also, the consequence of increased caveolin-1 expression on leptin signaling was investigated by adenovirus mediated caveolin-1 overexpression. The effect of increased caveolin-1 expression on leptin-dependent activation of ERK1/2 and eNOS was determined by Western blot analysis. RESULTS: Leptin upregulates caveolin-1 protein expression in a dose dependent manner and increased caveolin-1 expression impairs leptin signaling. CONCLUSIONS: Leptin increases caveolin-1 protein expression which impairs leptin signaling in vascular endothelial cells. Our study identifies an additional leptin mediated proatherogenic mechanism and a novel caveolin-1 dependent leptin feedback mechanism which may have implications for development of peripheral leptin resistance in the endothelium.


Assuntos
Aterosclerose/etiologia , Caveolina 1/metabolismo , Células Endoteliais/metabolismo , Leptina/metabolismo , Adenoviridae/genética , Aterosclerose/metabolismo , Western Blotting , Caveolina 1/genética , Células Cultivadas , Vetores Genéticos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Transdução de Sinais , Fatores de Tempo , Transfecção , Regulação para Cima
17.
Peptides ; 29(8): 1451-5, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18448202

RESUMO

The present study aimed to define the ability of erythropoietin (EPO) to mobilize hematopoietic stem cells (c-kit(+)/sca-1(+)/lin-1(-); KSL-cells) and hematopoietic progenitor cells (CD34(+) cells), including vascular endothelial growth factor receptor 2 expressing hematopoietic progenitor cells (CD34(+)/Flk-1(+) cells). We also sought to determine the role of endothelial nitric oxide synthase (eNOS) in EPO-induced mobilization. Wild type (WT) and eNOS(-/-) mice were injected bi-weekly with recombinant erythropoietin (EPO, 1000U/kg, s.c.) for 14 days. EPO increased the number of KSL, CD34(+), CD34(+)/Flk-1(+) cells in circulating blood of wild type mice. These effects of EPO were abolished in eNOS(-/-) mice. Our results demonstrate that, EPO stimulates mobilization of hematopoietic stem and progenitor cells. This effect of EPO is critically dependent on activation of eNOS.


Assuntos
Eritropoetina/fisiologia , Mobilização de Células-Tronco Hematopoéticas , Óxido Nítrico Sintase Tipo III/metabolismo , Animais , Ativação Enzimática/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
18.
Am J Physiol Heart Circ Physiol ; 289(6): H2334-41, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15964923

RESUMO

Patients with left-to-right shunt congenital heart disease may develop pulmonary hypertension. Perioperative mortality of these patients is high due to abnormal vasoreactivity of the pulmonary artery (PA). We studied the changes in the PA induced by high pulmonary blood flow in rats with aortocaval fistula. Eight weeks after surgery, morphological changes of the PA were studied and vasomotor function was assessed by isometric force recording. Expression of endothelial nitric oxide (NO) synthase (eNOS), VEGF, and cyclooxygenase-2 (COX-2) proteins and levels of cGMP in the PA were analyzed. Rats with high pulmonary blood flow developed pulmonary hypertension, medial thickening, and increasing of internal elastic lamina and basement membrane in the PA. When compared with sham-operated animals, rats with fistula had significantly increased contractions in the PA, whereas relaxations to acetylcholine and NO donor were reduced. Concentrations of cGMP were reduced in the PA of rats with pulmonary hypertension (18.4 +/- 3.3 vs. 9.4 +/- 1.7 pmol/mg protein; P = 0.04). The altered vasomotor function was normalized by treatment with indomethacin. The PA of rats with fistula expressed higher levels of eNOS, phosphorylated eNOS, and COX-2. Sustained high PA blood flow in rats causes pulmonary hypertension that is morphologically and functionally identical with patients with flow-induced pulmonary hypertension. Abnormal vasomotor function of the PA in these animals appears to be mediated by reduced availability and the biological effect of endogenous NO and the high production of vasoconstrictor prostanoids. Increased eNOS and phosphorylated eNOS are most likely the adaptive changes in response to an increase in PA pressure secondary to high blood flow.


Assuntos
Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Neovascularização Patológica/patologia , Neovascularização Patológica/fisiopatologia , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Animais , Velocidade do Fluxo Sanguíneo , Pressão Sanguínea , Hipertensão Pulmonar/complicações , Neovascularização Patológica/etiologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos , Ratos Sprague-Dawley , Vasoconstrição
20.
Arterioscler Thromb Vasc Biol ; 25(3): 506-11, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15604414

RESUMO

OBJECTIVE: Vascular endothelial growth factor (VEGF) is one of the most important pro-angiogenic cytokines. Ability of VEGF to stimulate formation of superoxide anion in vivo has not been studied. We hypothesized that in vivo expression of recombinant VEGF in the rabbit carotid artery increases production of superoxide anion. METHODS AND RESULTS: Plaque-forming units (10(9)) of adenovirus-encoding human VEGF165 (AdVEGF) or beta-galactosidase (AdLacZ) were delivered into the lumen of rabbit carotid arteries. Three days after gene delivery, expression of recombinant proteins was detected in endothelium and smooth muscle cells. Endothelium-dependent relaxations to acetylcholine were impaired in AdVEGF-transduced arteries (P<0.01; n=5). Treatment with superoxide dismutase mimetic, Mn(III) tetra(4-benzoic acid) porphyrin chloride (10(-5) mol/L), improved relaxations to acetylcholine (P<0.01; n=5). Western blot analysis demonstrated increased expression of p47(phox) in AdVEGF-transduced arteries (P<0.05; n=8). Lucigenin chemiluminescence showed significantly higher production of superoxide anion in AdVEGF-transduced arteries (P<0.05; n=5 to 10). CONCLUSIONS: Our results suggest that in vivo expression of recombinant VEGF in the vascular endothelium increases local production of superoxide anion. Superoxide anion appears to be an important mediator of vascular effects of VEGF in vivo.


Assuntos
Artérias Carótidas/metabolismo , Artérias Carótidas/fisiologia , Superóxidos/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Biopterinas/genética , Artérias Carótidas/citologia , GMP Cíclico/metabolismo , GTP Cicloidrolase/metabolismo , Técnicas de Transferência de Genes , Humanos , Hidrazinas/farmacologia , Imuno-Histoquímica , Masculino , NADPH Oxidases/metabolismo , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo III , Óxidos de Nitrogênio , Fenilefrina/farmacologia , Fosfoproteínas/metabolismo , Coelhos , Proteínas Recombinantes/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/fisiologia , Vasoconstritores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA