Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Behav Brain Res ; 467: 114991, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38614209

RESUMO

Stroke is a leading cause of death and disability in the United States. Most strokes are ischemic, resulting in both cognitive and motor impairments. Animal models of ischemic stroke such as the distal middle cerebral artery occlusion (dMCAO) and photothrombotic stroke (PTS) procedures have become invaluable tools, with their own advantages and disadvantages. The dMCAO model is clinically relevant as it occludes the artery most affected in humans, but yields variability in the infarct location as well as the behavioral and cognitive phenotypes disrupted. The PTS model has the advantage of allowing for targeted location of infarct, but is less clinically relevant. The present study evaluates phenotype disruption over time in mice subjected to either dMCAO, PTS, or a sham surgery. Post-surgery, animals were tested over 28 days on standard motor tasks (grid walk, cylinder, tapered beam, and rotating beam), as well as a novel odor-based operant task; the 5:1 Odor Discrimination Task (ODT). Results demonstrate a significantly greater disturbance of motor control with PTS as compared with Sham and dMCAO. Disruption of the PTS group was detected up to 28 days post-stroke on the grid walk, and up to 7 days on the rotating and tapered beam tasks. PTS also led to significant short-term disruption of ODT performance (1-day post-surgery), exclusively in males, which appeared to be driven by motoric disruption of the lick response. Together, this data provides critical insights into the selection and optimization of animal models for ischemic stroke research. Notably, the PTS procedure was best suited for producing disruptions of motor behavior that can be detected with common behavioral assays and are relatively enduring, as is observed in human stroke.


Assuntos
Modelos Animais de Doenças , Infarto da Artéria Cerebral Média , Camundongos Endogâmicos C57BL , Animais , Masculino , Infarto da Artéria Cerebral Média/fisiopatologia , Infarto da Artéria Cerebral Média/complicações , Camundongos , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/complicações , Atividade Motora/fisiologia , AVC Trombótico , Feminino , Odorantes , Discriminação Psicológica/fisiologia , Comportamento Animal/fisiologia , AVC Isquêmico/fisiopatologia
2.
bioRxiv ; 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37905154

RESUMO

Microglia and astrocytes play an important role in the neuroinflammatory response and contribute to both the destruction of neighboring tissue as well as the resolution of inflammation following stroke. These reactive glial cells are highly heterogeneous at both the transcriptomic and functional level. Depending upon the stimulus, microglia and astrocytes mount a complex, and specific response composed of distinct microglial and astrocyte substates. These substates ultimately drive the landscape of the initiation and recovery from the adverse stimulus. In one state, inflammation- and damage-induced microglia release tumor necrosis factor (TNF), interleukin 1α (IL1α), and complement component 1q (C1q), together 'TIC'. This cocktail of cytokines drives astrocytes into a neurotoxic reactive astrocyte (nRA) substate. This nRA substate is associated with loss of many physiological astrocyte functions (e.g., synapse formation and maturation, phagocytosis, among others), as well as a gain-of-function release of neurotoxic long-chain fatty acids which kill neighboring cells. Here we report that transgenic removal of TIC led to reduction of gliosis, infarct expansion, and worsened functional deficits in the acute and delayed stages following stroke. Our results suggest that TIC cytokines, and likely nRAs play an important role that may maintain neuroinflammation and inhibit functional motor recovery after ischemic stroke. This is the first report that this paradigm is relevant in stroke and that therapies against nRAs may be a novel means to treat patients. Since nRAs are evolutionarily conserved from rodents to humans and present in multiple neurodegenerative diseases and injuries, further identification of mechanistic role of nRAs will lead to a better understanding of the neuroinflammatory response and the development of new therapies.

3.
Front Mol Neurosci ; 16: 1305949, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38240014

RESUMO

Microglia and astrocytes play an important role in the neuroinflammatory response and contribute to both the destruction of neighboring tissue as well as the resolution of inflammation following stroke. These reactive glial cells are highly heterogeneous at both the transcriptomic and functional level. Depending upon the stimulus, microglia and astrocytes mount a complex, and specific response composed of distinct microglial and astrocyte substates. These substates ultimately drive the landscape of the initiation and recovery from the adverse stimulus. In one state, inflammation- and damage-induced microglia release tumor necrosis factor (TNF), interleukin 1α (IL1α), and complement component 1q (C1q), together "TIC." This cocktail of cytokines drives astrocytes into a neurotoxic reactive astrocyte (nRA) substate. This nRA substate is associated with loss of many physiological astrocyte functions (e.g., synapse formation and maturation, phagocytosis, among others), as well as a gain-of-function release of neurotoxic long-chain fatty acids which kill neighboring cells. Here we report that transgenic removal of TIC led to reduction of gliosis, infarct expansion, and worsened functional deficits in the acute and delayed stages following stroke. Our results suggest that TIC cytokines, and likely nRAs play an important role that may maintain neuroinflammation and inhibit functional motor recovery after ischemic stroke. This is the first report that this paradigm is relevant in stroke and that therapies against nRAs may be a novel means to treat patients. Since nRAs are evolutionarily conserved from rodents to humans and present in multiple neurodegenerative diseases and injuries, further identification of mechanistic role of nRAs will lead to a better understanding of the neuroinflammatory response and the development of new therapies.

4.
J Nucl Med ; 60(1): 122-128, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29976695

RESUMO

Neuroinflammation plays a key role in neuronal injury after ischemic stroke. PET imaging of translocator protein 18 kDa (TSPO) permits longitudinal, noninvasive visualization of neuroinflammation in both preclinical and clinical settings. Many TSPO tracers have been developed, however, it is unclear which tracer is the most sensitive and accurate for monitoring the in vivo spatiotemporal dynamics of neuroinflammation across applications. Hence, there is a need for head-to-head comparisons of promising TSPO PET tracers across different disease states. Accordingly, the aim of this study was to directly compare 2 promising second-generation TSPO tracers, 11C-DPA-713 and 18F-GE-180, for the first time at acute and chronic time points after ischemic stroke. Methods: After distal middle cerebral artery occlusion or sham surgery, mice underwent consecutive PET/CT imaging with 11C-DPA-713 and 18F-GE-180 at 2, 6, and 28 d after stroke. T2-weighted MR images were acquired to enable delineation of ipsilateral (infarct) and contralateral brain regions of interest (ROIs). PET/CT images were analyzed by calculating percentage injected dose per gram in MR-guided ROIs. SUV ratios were determined using the contralateral thalamus (SUVTh) as a pseudoreference region. Ex vivo autoradiography and immunohistochemistry were performed to verify in vivo findings. Results: Significantly increased tracer uptake was observed in the ipsilateral compared with contralateral ROI (SUVTh, 50-60 min summed data) at acute and chronic time points using 11C-DPA-713 and 18F-GE-180. Ex vivo autoradiography confirmed in vivo findings demonstrating increased TSPO tracer uptake in infarcted versus contralateral brain tissue. Importantly, a significant correlation was identified between microglial/macrophage activation (cluster of differentiation 68 immunostaining) and 11C-DPA-713- PET signal, which was not evident with 18F-GE-180. No significant correlations were observed between TSPO PET and activated astrocytes (glial fibrillary acidic protein immunostaining). Conclusion:11C-DPA-713 and 18F-GE-180 PET enable detection of neuroinflammation at acute and chronic time points after cerebral ischemia in mice. 11C-DPA-713 PET reflects the extent of microglial activation in infarcted distal middle cerebral artery occlusion mouse brain tissue more accurately than 18F-GE-180 and appears to be slightly more sensitive. These results highlight the potential of 11C-DPA-713 for tracking microglial activation in vivo after stroke and warrant further investigation in both preclinical and clinical settings.


Assuntos
Acetamidas , Isquemia Encefálica/complicações , Carbazóis , Tomografia por Emissão de Pósitrons/métodos , Pirazóis , Pirimidinas , Receptores de GABA/metabolismo , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Doença Aguda , Animais , Radioisótopos de Carbono , Doença Crônica , Modelos Animais de Doenças , Radioisótopos de Flúor , Inflamação/diagnóstico por imagem , Camundongos , Traçadores Radioativos , Acidente Vascular Cerebral/metabolismo
5.
Nature ; 541(7638): 481-487, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28099414

RESUMO

Reactive astrocytes are strongly induced by central nervous system (CNS) injury and disease, but their role is poorly understood. Here we show that a subtype of reactive astrocytes, which we termed A1, is induced by classically activated neuroinflammatory microglia. We show that activated microglia induce A1 astrocytes by secreting Il-1α, TNF and C1q, and that these cytokines together are necessary and sufficient to induce A1 astrocytes. A1 astrocytes lose the ability to promote neuronal survival, outgrowth, synaptogenesis and phagocytosis, and induce the death of neurons and oligodendrocytes. Death of axotomized CNS neurons in vivo is prevented when the formation of A1 astrocytes is blocked. Finally, we show that A1 astrocytes are abundant in various human neurodegenerative diseases including Alzheimer's, Huntington's and Parkinson's disease, amyotrophic lateral sclerosis and multiple sclerosis. Taken together these findings help to explain why CNS neurons die after axotomy, strongly suggest that A1 astrocytes contribute to the death of neurons and oligodendrocytes in neurodegenerative disorders, and provide opportunities for the development of new treatments for these diseases.


Assuntos
Astrócitos/classificação , Astrócitos/patologia , Morte Celular , Sistema Nervoso Central/patologia , Microglia/patologia , Neurônios/patologia , Animais , Astrócitos/metabolismo , Axotomia , Técnicas de Cultura de Células , Sobrevivência Celular , Complemento C1q/metabolismo , Progressão da Doença , Humanos , Inflamação/patologia , Interleucina-1alfa/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Doenças Neurodegenerativas/patologia , Oligodendroglia/patologia , Fagocitose , Fenótipo , Ratos , Ratos Sprague-Dawley , Sinapses/patologia , Toxinas Biológicas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
AAPS J ; 17(5): 1255-67, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26068867

RESUMO

In contrast to considerable data demonstrating a decrease in cytochrome P450 (CYP) activity in inflammation and infection, clinically, traumatic brain injury (TBI) results in an increase in CYP and UDP glucuronosyltransferase (UGT) activity. The objective of this study was to determine the effects of TBI alone and with treatment with erythropoietin (EPO) or anakinra on the gene expression of hepatic inflammatory proteins, drug-metabolizing enzymes, and transporters in a cortical contusion impact (CCI) injury model. Microarray-based transcriptional profiling was used to determine the effect on gene expression at 24 h, 72 h, and 7 days post-CCI. Plasma cytokine and liver protein concentrations of CYP2D4, CYP3A1, EPHX1, and UGT2B7 were determined. There was no effect of TBI, TBI + EPO, or TBI + anakinra on gene expression of the inflammatory factors shown to be associated with decreased expression of hepatic metabolic enzymes in models of infection and inflammation. IL-6 plasma concentrations were increased in TBI animals and decreased with EPO and anakinra treatment. There was no significant effect of TBI and/or anakinra on gene expression of enzymes or transporters known to be involved in drug disposition. TBI + EPO treatment decreased the gene expression of Cyp2d4 at 72 h with a corresponding decrease in CYP2D4 protein at 72 h and 7 days. CYP3A1 protein was decreased at 24 h. In conclusion, EPO treatment may result in a significant decrease in the metabolism of Cyp-metabolized drugs. In contrast to clinical TBI, there was not a significant effect of experimental TBI on CYP or UGT metabolic enzymes.


Assuntos
Lesões Encefálicas/complicações , Eritropoetina/farmacologia , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Fígado/metabolismo , Animais , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/fisiopatologia , Sistema Enzimático do Citocromo P-450/metabolismo , Citocinas/sangue , Modelos Animais de Doenças , Regulação da Expressão Gênica , Glucuronosiltransferase/metabolismo , Inflamação/patologia , Interleucina-6/sangue , Fígado/enzimologia , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
7.
J Neurotrauma ; 32(11): 765-79, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25313690

RESUMO

Neuroprotection, recovery of function, and gene expression were evaluated in an animal model of traumatic brain injury (TBI) after a combination treatment of nicotinamide (NAM) and progesterone (Prog). Animals received a cortical contusion injury over the sensorimotor cortex, and were treated with either Vehicle, NAM, Prog, or a NAM/Prog combination for 72 h and compared with a craniotomy only (Sham) group. Animals were assessed in a battery of behavioral, sensory, and both fine and gross motor tasks, and given histological assessments at 24 h post-injury to determine lesion cavity size, degenerating neurons, and reactive astrocytes. Microarray-based transcriptional profiling was used to determine treatment-specific changes on gene expression. Our results confirm the beneficial effects of treatment with either NAM or Prog, demonstrating significant improvements in recovery of function and a reduction in lesion cavitation, degenerating neurons, and reactive astrocytes 24 h post-injury. The combination treatment of NAM and Prog led to a significant improvement in both neuroprotection at 24 h post-injury and recovery of function in sensorimotor related tasks when compared with individual treatments. The NAM/Prog-treated group was the only treatment group to show a significant reduction of cortical loss 24 h post-injury. The combination appears to affect inflammatory and immune processes, reducing expression of a significant number of genes in both pathways. Further preclinical trials using NAM and Prog as a combination treatment should be conducted to identify the window of opportunity, determine the optimal duration of treatment, and evaluate the combination in other pre-clinical models of TBI.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/patologia , Niacinamida/administração & dosagem , Progesterona/administração & dosagem , Recuperação de Função Fisiológica/efeitos dos fármacos , Animais , Lesões Encefálicas/genética , Quimioterapia Combinada , Masculino , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/genética
8.
Brain Res ; 1544: 15-24, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24321616

RESUMO

Anatomical tracing studies in primates have revealed neural tracts from the cerebellar dentate nuclei to prefrontal cortex, implicating a cerebellar role in nonmotor processes. Experiments in rats examining the functional role of this cerebellothalamocortical pathway have demonstrated the development of visuospatial and motivational deficits following lesions of the dentate nuclei, in the absence of motor impairment. These behavioral deficits possibly occur due to structural modifications of the cerebral cortex secondary to loss of cerebellar input. The current study characterized morphological alterations in prefrontal cortex important for visuospatial and motivational processes following bilateral cerebellar dentate nuclei lesions. Rats received either bilateral electrolytic cerebellar dentate nuclei lesions or sham surgery followed by a 30-day recovery. Randomly selected Golgi-impregnated neurons in prefrontal cortex were examined for analysis. Measures of branch length and spine density revealed no differences between lesioned and sham rats in either apical or basilar arbors; however, the proportion of immature to mature spines significantly decreased in lesioned rats as compared to sham controls, with reductions of 33% in the basilar arbor and 28% in the apical arbor. Although expected pruning of branches and spines did not occur, the results are consistent with the hypothesis that cerebellar lesions influence prefrontal morphology and support the possibility that functional deficits following cerebellar dentate nuclei lesions are related to prefrontal morphological alteration.


Assuntos
Núcleos Cerebelares/fisiologia , Espinhas Dendríticas/ultraestrutura , Córtex Pré-Frontal/ultraestrutura , Animais , Núcleos Cerebelares/patologia , Masculino , Vias Neurais , Ratos , Ratos Long-Evans
9.
J Neurotrauma ; 29(18): 2823-30, 2012 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-23016598

RESUMO

The primary goal of this study was to compare clinically relevant doses of progesterone and nicotinamide within the same injury model. Progesterone has been shown to reduce edema and inflammation and improve functional outcomes following brain injury. Nicotinamide has also been shown to be an effective neuroprotective agent in a variety of neurological injury models. In the current study, nicotinamide was administered beginning 4 h post-cortical contusion injury (CCI) with a loading dose (75 mg/kg, i.p.) combined with continuous infusion (12 mg/h/kg, s.c.) for 72 h post-injury. Progesterone was administered beginning 4 h post-CCI at a dose of 10 or 20 mg/kg, i.p. every 12 h for 72 h. This resulted in the following groups: Injured-nicotinamide treated, Injured-progesterone-10 treated, Injured-progesterone-20 treated, Injured-vehicle treated, and Sham. Functional recovery was assessed with two spatial memory tasks in the Morris water maze (MWM) the acquisition of a reference memory task and a reversal learning task. Neuropathological assessments were conducted in the cortex and hippocampus. It was found that both progesterone (10 mg/kg) and nicotinamide improved reference memory acquisition and reversal learning in the MWM compared with vehicle treatment. The lower dose of progesterone and nicotinamide also reduced tissue loss in the injured cortex and ipsilateral hippocampus compared with vehicle. The beneficial effects of progesterone appear to be dose dependent with the lower 10 mg/kg dose producing significant effects that were not observed at the higher dose. Direct comparison between nicotinamide and low dose progesterone appears to suggest that both are equally effective. The general findings of this study suggest that both nicotinamide and progesterone produce significant improvements in recovery of function following CCI.


Assuntos
Comportamento Animal/efeitos dos fármacos , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/psicologia , Cognição/efeitos dos fármacos , Niacinamida/uso terapêutico , Progesterona/uso terapêutico , Análise de Variância , Animais , Encéfalo/patologia , Lesões Encefálicas/patologia , Hipocampo/patologia , Bombas de Infusão Implantáveis , Aprendizagem/fisiologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória de Longo Prazo/efeitos dos fármacos , Procedimentos Neurocirúrgicos , Niacinamida/administração & dosagem , Progesterona/administração & dosagem , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Reversão de Aprendizagem/fisiologia
10.
Expert Opin Drug Discov ; 7(5): 371-4, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22468854

RESUMO

Recombinant DNA technologies have had a fundamental impact on drug discovery. The continuous emergence of unique gene assembly techniques resulted in the generation of a variety of therapeutic reagents such as vaccines, cancer treatment molecules and regenerative medicine precursors. With the advent of synthetic biology there is a growing need for precise and concerted assembly of multiple DNA fragments of various sizes, including chromosomes. In this article, we summarize the highlights of the recombinant DNA technology since its inception in the early 1970s, emphasizing on the most recent advances, and underscoring their principles, advantages and shortcomings. Current and prior cloning trends are discussed in the context of sequence requirements and scars left behind. Our opinion is that despite the remarkable progress that has enabled the generation and manipulation of very large DNA sequences, a better understanding of the cell's natural circuits is needed in order to fully exploit the current state-of-the-art gene assembly technologies.


Assuntos
DNA Recombinante/química , DNA Recombinante/genética , Descoberta de Drogas/métodos , Engenharia Genética/métodos , Biologia Sintética/métodos , Clonagem Molecular , Humanos
11.
Anal Chem ; 74(8): 1792-7, 2002 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-11985309

RESUMO

The application of resonance light scattering (RLS) particles for high-sensitivity detection of DNA hybridization on cDNA microarrays is demonstrated. Arrays composed of approximately 2000 human genes ("targets") were hybridized with colabeled (Cy3 and biotin) human lung cDNA probes at concentrations ranging from 8.3 ng/microL to 16.7 pg/microL. After hybridization, the arrays were imaged using a fluorescence scanner. The arrays were then treated with 80-nm-diameter gold RLS Particles coated with anti-biotin antibodies and imaged in a white light, CCD-based imaging system. At low probe concentrations, significantly more genes were detected by RLS compared to labeling by Cy3. For example, for hybridizations with a probe concentration of 83.3 pg/microL, approximately 1150 positive genes were detected using RLS compared to approximately 110 positive genes detected with Cy3. In a differential gene expression experiment using human lung and leukemia RNA samples, similar differential expression profiles were obtained for labeling by RLS and fluorescence technologies. The use of RLS Particles is particularly attractive for detection and identification of low-abundance mRNAs and for those applications in which the amount of sample is limited.


Assuntos
Hibridização de Ácido Nucleico/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Sondas de DNA/química , Perfilação da Expressão Gênica/métodos , Humanos , Luz , Pulmão/química , RNA Neoplásico/análise , Espalhamento de Radiação , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA