Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 8: 756, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28713380

RESUMO

BACKGROUND: Graft-vs-host disease (GVHD) is a major complication of allogenic bone marrow transplantation (BMT). Targeting costimulatory molecules with antagonist antibodies could dampen the excessive immune response that occurs, while preserving the beneficial graft vs leukemia (GVL) of the allogeneic response. Previous studies using a mouse model of GVHD have shown that targeting the T-cell Inducible COStimulator (ICOS, CD278) molecule is beneficial, but it is unclear whether the same applies to human cells. METHODS: Here, we assessed whether a monoclonal antibody (mAb) to human ICOS was able to antagonize the costimulatory signal delivered in vivo to human T cells. To test this hypothesis, we used a xenogeneic model of GVHD where human peripheral blood mononuclear cells were adoptively transferred in immunocompromised NOD.SCID.gc-null mice (NSG). RESULTS: In this model, control mice invariably lost weight and died by day 50. In contrast, 65% of the mice receiving a single injection of the anti-hICOS mAb survived beyond 100 days. Moreover, a significant improvement in survival was obtained in a curative xeno-GVHD setting. Mechanistically, administration of the anti-hICOS mAb was associated with a strong reduction in perivascular infiltrates in liver and lungs and reduction in frequencies and numbers of human T cells in the spleen. In addition, the mAb prevented T-cell expansion in the blood during xeno-GVHD. Importantly, GVHD-protected mice retained the ability to control the P815 mastocytoma cell line, mimicking GVL in humans. CONCLUSION: A mAb-targeting human ICOS alleviated GVHD without impairing GVL in a xenograft murine model. Thus, ICOS represents a promising target in the management of BMT, preventing GVHD while preserving GVL.

2.
J Hepatol ; 55(1): 162-70, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21145811

RESUMO

BACKGROUND & AIMS: Erythropoietic protoporphyria (EPP) is an inherited disorder of heme biosynthesis caused by partial ferrochelatase deficiency, resulting in protoporphyrin IX (PPIX) accumulation in erythrocytes, responsible for skin photosensitivity. In some EPP patients, the development of cholestatic liver injury due to PPIX accumulation can lead to hepatic failure. In adult EPP mice, bone marrow transplantation (BMT) leads to skin photosensitivity correction but fails to reverse liver damages, probably because of the irreversible nature of liver fibrosis. Our aim was to determine the time course of liver disease progression in EPP mice and to evaluate the protective effect of BMT into neonates. METHODS: We studied the development of liver disease from birth in EPP mice, in relation with erythroid and hepatic PPIX accumulation. To prevent the development of liver disease, BMT was performed into newborn mice using a novel busulfan-mediated preconditioning assay. RESULTS: We showed that hepatic PPIX accumulates during the first 2 weeks and correlates with the onset of a progressive liver fibrosis in 12-day-old EPP mice. Transplantation of normal congenic hematopoietic stem cells into EPP neonates led to long-term donor hematopoiesis recovery. A full correction of erythroid PPIX accumulation and skin photosensitivity was obtained. Furthermore, five months after neonatal BMT, liver damage was almost completely prevented. CONCLUSIONS: We demonstrated for the first time that BMT could be successfully used to prevent liver disease in EPP mice and suggested that BMT would be an attractive therapeutic option to prevent severe liver dysfunction in EPP patients.


Assuntos
Transplante de Medula Óssea , Hepatopatias/prevenção & controle , Protoporfiria Eritropoética/complicações , Protoporfiria Eritropoética/terapia , Animais , Animais Recém-Nascidos , Bussulfano/administração & dosagem , Modelos Animais de Doenças , Progressão da Doença , Ferroquelatase/genética , Humanos , Fígado/metabolismo , Fígado/patologia , Hepatopatias/etiologia , Hepatopatias/metabolismo , Hepatopatias/patologia , Falência Hepática/prevenção & controle , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Agonistas Mieloablativos/administração & dosagem , Protoporfiria Eritropoética/enzimologia , Protoporfiria Eritropoética/genética , Protoporfirinas/metabolismo , Condicionamento Pré-Transplante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA