Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 177: 117039, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38955085

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is a malignant hematological disorder characterized by an increased proliferation of immature T lymphocytes precursors. T-ALL treatment includes chemotherapy with strong side effects, and patients that undergo relapse display poor prognosis. Although cell-intrinsic oncogenic pathways are well-studied, the tumor microenvironment, like inflammatory cellular and molecular components is less explored in T-ALL. We sought to determine the composition of the inflammatory microenvironment induced by T-ALL, and its role in T-ALL progression. We show in two mouse T-ALL cell models that T-ALLs enhance blood neutrophils and resident monocytes, accompanied with a plasmatic acute secretion of inflammatory molecules. Depleting neutrophils using anti-Ly6G treatment or resident monocytes by clodronate liposomes treatment does not modulate plasmatic inflammatory molecule secretion and mice survival. However, inhibiting the secretion of inflammatory molecules by microenvironment with NECA, an agonist of adenosine receptors, diminishes T-ALL progression enhancing mouse survival. We uncovered Hepatocyte Growth Factor (HGF), T-ALL-driven and the most decreased molecule with NECA, as a potential therapeutic target in T-ALL. Altogether, we identified a signature of inflammatory molecules that can potentially be involved in T-ALL evolution and uncovered HGF/cMET pathway as important to target for limiting T-ALL progression.


Assuntos
Progressão da Doença , Fator de Crescimento de Hepatócito , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Microambiente Tumoral , Animais , Fator de Crescimento de Hepatócito/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Linhagem Celular Tumoral , Inflamação/patologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Neutrófilos/metabolismo , Neutrófilos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Monócitos/patologia
2.
Stem Cell Res Ther ; 14(1): 201, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37568164

RESUMO

BACKGROUND: Human multilineage-differentiating stress enduring (Muse) cells are nontumorigenic endogenous pluripotent-like stem cells that can be easily obtained from various adult or fetal tissues. Regenerative effects of Muse cells have been shown in some disease models. Muse cells specifically home in damaged tissues where they exert pleiotropic effects. Exposition of the small intestine to high doses of irradiation (IR) delivered after radiotherapy or nuclear accident results in a lethal gastrointestinal syndrome (GIS) characterized by acute loss of intestinal stem cells, impaired epithelial regeneration and subsequent loss of the mucosal barrier resulting in sepsis and death. To date, there is no effective medical treatment for GIS. Here, we investigate whether Muse cells can prevent lethal GIS and study how they act on intestinal stem cell microenvironment to promote intestinal regeneration. METHODS: Human Muse cells from Wharton's jelly matrix of umbilical cord (WJ-Muse) were sorted by flow cytometry using the SSEA-3 marker, characterized and compared to bone-marrow derived Muse cells (BM-Muse). Under gas anesthesia, GIS mice were treated or not through an intravenous retro-orbital injection of 50,000 WJ-Muse, freshly isolated or cryopreserved, shortly after an 18 Gy-abdominal IR. No immunosuppressant was delivered to the mice. Mice were euthanized either 24 h post-IR to assess early small intestine tissue response, or 7 days post-IR to assess any regenerative response. Mouse survival, histological stainings, apoptosis and cell proliferation were studied and measurement of cytokines, recruitment of immune cells and barrier functional assay were performed. RESULTS: Injection of WJ-Muse shortly after abdominal IR highly improved mouse survival as a result of a rapid regeneration of intestinal epithelium with the rescue of the impaired epithelial barrier. In small intestine of Muse-treated mice, an early enhanced secretion of IL-6 and MCP-1 cytokines was observed associated with (1) recruitment of monocytes/M2-like macrophages and (2) proliferation of Paneth cells through activation of the IL-6/Stat3 pathway. CONCLUSION: Our findings indicate that a single injection of a small quantity of WJ-Muse may be a new and easy therapeutic strategy for treating lethal GIS.


Assuntos
Alprostadil , Células-Tronco Mesenquimais , Adulto , Camundongos , Humanos , Animais , Diferenciação Celular/fisiologia , Alprostadil/metabolismo , Células-Tronco Mesenquimais/metabolismo , Interleucina-6/metabolismo , Intestinos
3.
Epigenetics Chromatin ; 12(1): 46, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31331374

RESUMO

BACKGROUND: Cell type-specific use of cis-acting regulatory elements is mediated by the combinatorial activity of transcription factors involved in lineage determination and maintenance of cell identity. In macrophages, specific transcriptional programs are dictated by the transcription factor PU.1 that primes distal regulatory elements for macrophage identities and makes chromatin competent for activity of stimuli-dependent transcription factors. Although the advances in genome-wide approaches have elucidated the functions of these macrophage-specific distal regulatory elements in transcriptional responses, chromatin structures associated with PU.1 priming and the underlying mechanisms of action of these cis-acting sequences are not characterized. RESULTS: Here, we show that, in macrophages, FACT subunit SPT16 can bind to positioned nucleosomes directly flanking PU.1-bound sites at previously uncharacterized distal regulatory elements located near genes essential for macrophage development and functions. SPT16 can interact with the transcriptional co-regulator TRIM33 and binds to half of these sites in a TRIM33-dependent manner. Using the Atp1b3 locus as a model, we show that FACT binds to two positioned nucleosomes surrounding a TRIM33/PU.1-bound site in a region, located 35 kb upstream the Atp1b3 TSS, that interact with the Atp1b3 promoter. At this - 35 kb region, TRIM33 deficiency leads to FACT release, loss of the two positioned nucleosomes, RNA Pol II recruitment and bidirectional transcription. These modifications are associated with higher levels of FACT binding at the Atp1b3 promoter, an increase of RNA Pol II recruitment and an increased expression of Atp1b3 in Trim33-/- macrophages. CONCLUSIONS: Thus, sequestering of SPT16/FACT by TRIM33 at PU.1-bound distal regions might represent a new regulatory mechanism for RNA Pol II recruitment and transcription output in macrophages.


Assuntos
Montagem e Desmontagem da Cromatina , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Animais , Sítios de Ligação , Histonas/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nucleossomos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , RNA Polimerase II/metabolismo , Sequências Reguladoras de Ácido Nucleico , ATPase Trocadora de Sódio-Potássio/genética , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Transcrição Gênica
4.
EBioMedicine ; 44: 60-70, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31130476

RESUMO

BACKGROUND: Mature myeloid cells play a crucial role in Crohn's disease (CD) but the molecular players that regulate their functions in CD are not fully characterized. We and others have shown that TRIM33 is involved in the innate immune response and in the inflammatory response but TRIM33 role in intestinal inflammation is not known. In this study, we investigated the role of TRIM33 in myeloid cells during dextran sulfate sodium (DSS)-induced colitis. METHODS: We study the role of TRIM33 during DSS-induced colitis which mimics intestinal inflammation using mice deleted for Trim33 only in mature myeloid cells (Trim33-/- mice) FINDINGS: We first show that Trim33 mRNA level is decreased in CD patient's blood monocytes suggesting a role of TRIM33 in CD. Using Trim33-/- mice, we show that these mice display an impaired resolution of colonic inflammation with an increased number of blood and colon monocytes and a decreased number of colonic macrophages. Trim33-/- monocytes are less competent for recruitment and macrophage differentiation. Finally, during resolution of inflammation, Trim33-/- colonic macrophages display an impaired M1/M2 switch and express a low level of membrane-bound TNF that is associated with an increased number of colonic neutrophils. INTERPRETATION: Our study shows an important role of TRIM33 in monocytes/macrophages during DSS-induced colitis and suggests that the decreased expression of TRIM33 in CD patient's blood monocytes might not be a consequence but might be involved in CD progression. FUND: La Ligue contre le Cancer (équipe labelisée), INSERM, CEA, Université Paris-Diderot, Université Paris-Sud.


Assuntos
Colite/etiologia , Macrófagos/metabolismo , Monócitos/metabolismo , Fatores de Transcrição/deficiência , Animais , Biomarcadores , Colite/metabolismo , Colite/patologia , Doença de Crohn/etiologia , Doença de Crohn/metabolismo , Doença de Crohn/patologia , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Ativação de Macrófagos/genética , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Knockout , Monócitos/imunologia , Células Mieloides/imunologia , Células Mieloides/metabolismo , RNA Mensageiro
5.
Methods Mol Biol ; 1784: 93-98, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29761391

RESUMO

Macrophages are one of the most abundant leucocytes in the intestinal mucosa where they are essential for maintaining homeostasis. However they are also implicated in the pathogenesis of disorders such as inflammatory bowel disease (IBD), offering potential targets for novel therapies.Tissue macrophages are a heterogeneous population of immune cells that fulfill tissue-specific and niche-specific functions. These unique phenotypes likely reflect the heterogeneity of tissue macrophage origins and influence the tissue environment in which they reside. Here we describe how we can characterize and isolate the colonic macrophages.


Assuntos
Separação Celular/métodos , Microambiente Celular/genética , Intestinos/citologia , Macrófagos/citologia , Linhagem da Célula/genética , Colo/patologia , Homeostase/genética , Humanos , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/citologia
6.
Oncotarget ; 8(3): 5111-5122, 2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-27974684

RESUMO

The tripartite motif (TRIM) family of proteins plays important roles in innate immunity and antimicrobial infection. None of these proteins has been shown to directly regulate transcription of genes in monocyte/macrophage except TRIM33 that we have recently shown to be a macrophage specific transcriptional inhibitor of Ifnb1. Using ChIP-seq analyses, we now report that TRIM33 is bound to two fold more genes in immature than in mature myeloid cell lines. When located near the same genes, TRIM33 is bound to different sequences in the two cell lines suggesting a role of TRIM33 in both immature and mature myeloid cells. Accordingly, expression of TRIM33 in immature myeloid cells is necessary for efficient production of small peritoneal macrophages, monocytes and bone marrow derived macrophage (BMDM) and TRIM33 targets a subset of genes involved in the inflammatory response only in mature myeloid cells. Functionally, this targeting is associated with impaired repression of pathways regulating the late phases of lipopolysaccharide (LPS) activation of BMDM and a high sensitivity to LPS in vivo when the trim33 gene is inactivated in mature myeloid cells. These findings pinpoint TRIM33 as an important transcriptional actor of monocyte/macrophage mediated inflammation.


Assuntos
Cromatina/metabolismo , Ativação de Macrófagos , Macrófagos/citologia , Fatores de Transcrição/metabolismo , Animais , Células Cultivadas , Cromatina/genética , Imunoprecipitação da Cromatina , DNA/metabolismo , Redes Reguladoras de Genes , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Células Mieloides/citologia , Células Mieloides/imunologia , Células RAW 264.7 , Análise de Sequência de DNA , Fatores de Transcrição/genética
7.
Nat Commun ; 6: 8900, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26592194

RESUMO

Despite its importance during viral or bacterial infections, transcriptional regulation of the interferon-ß gene (Ifnb1) in activated macrophages is only partially understood. Here we report that TRIM33 deficiency results in high, sustained expression of Ifnb1 at late stages of toll-like receptor-mediated activation in macrophages but not in fibroblasts. In macrophages, TRIM33 is recruited by PU.1 to a conserved region, the Ifnb1 Control Element (ICE), located 15 kb upstream of the Ifnb1 transcription start site. ICE constitutively interacts with Ifnb1 through a TRIM33-independent chromatin loop. At late phases of lipopolysaccharide activation of macrophages, TRIM33 is bound to ICE, regulates Ifnb1 enhanceosome loading, controls Ifnb1 chromatin structure and represses Ifnb1 gene transcription by preventing recruitment of CBP/p300. These results characterize a previously unknown mechanism of macrophage-specific regulation of Ifnb1 transcription whereby TRIM33 is critical for Ifnb1 gene transcription shutdown.


Assuntos
Regulação da Expressão Gênica , Interferon beta/genética , Macrófagos/citologia , Macrófagos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Feminino , Interferon beta/metabolismo , Ativação de Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição/genética , Transcrição Gênica
8.
J Am Soc Mass Spectrom ; 19(8): 1187-98, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18499472

RESUMO

Covalent protein-nucleic acid conjugates form an original class of compounds that occur in nature or can be generated in vitro through cross-linking to investigate domains involved in protein/nucleic acid interactions. Their mass spectrometry fragmentation patterns are poorly characterized. We have used electrospray-ionization mass spectrometry (ESI-MS) combined with collision-induced dissociation (CID) to characterize microcin C7-C51, an antimicrobial nucleotide peptide that targets aspartyl-tRNA synthetase and inhibits translation. The fragments of microcin C7-C51 were analyzed in positive- and negative-ion modes and compared with those of the corresponding unmodified heptapeptide and to the derived aspartyl-adenylate. The positive- and negative-ion mode fragments of microcin C7-C51 provided information on both the nucleotide and peptide moieties. Accurate mass measurement obtained using an LTQ Orbitrap instrument was a key factor for a comprehensive interpretation of the fragments. The experimental results obtained permitted the proposal of stepwise fragmentation pathways involving ion-dipole complexes. The data provide a better understanding of nucleotide peptide fragmentation in the gas phase.


Assuntos
Antibacterianos/química , Bacteriocinas/química , Escherichia coli/química , Nucleotídeos/química , Peptídeos/química , Escherichia coli/metabolismo , Espectrometria de Massas por Ionização por Electrospray
9.
J Mol Microbiol Biotechnol ; 13(4): 200-9, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17827970

RESUMO

Microcins are a peculiar class of gene-encoded low-molecular-mass antibacterial peptides secreted by enterobacteria. They contribute to the regulation of microbial competitions within the intestinal microbiota. The genetic systems involved in microcin biosynthesis share a conserved organization. Similar to bacteriocins of Gram-positive bacteria, microcins exert potent antibacterial activity directed against phylogenetically-related bacterial strains, with minimal inhibitory concentrations in the nanomolar range. In contrast to bacteriocins, they display a great structural diversity among the few representatives well characterized until now, that makes difficult the description of microcin subclasses. This review focuses on three microcins, MccE492m that carries a C-terminal posttranslational modification containing a catechol-type siderophore, MccJ25, a cyclic peptide with a unique 'lasso-type' structure and MccC7 or C51, with a common N-formylated heptapeptide-nucleotide structure. We show these microcins exhibit 'Trojan horse' mechanisms of antibacterial activity: either (i) the microcin structure is a mime of an essential element, permitting its recognition by outer membrane receptors used for vital functions in bacteria and further translocation into the periplasmic space, or (ii) it is secreted as a harmless molecule and further processed in susceptible bacteria to form the toxic entity. When inside target bacteria, microcins bind essential enzymes or interact with the inner membrane to form a bacterial killing structure.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Bacteriocinas/química , Bacteriocinas/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Sequência de Aminoácidos , Bacteriocinas/genética , Genes Bacterianos , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/metabolismo , Dados de Sequência Molecular , Peptídeos/genética , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA