Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
3.
J Steroid Biochem Mol Biol ; 197: 105536, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31734492

RESUMO

Vitamin D has emerged as a potentially important molecule in ophthalmology. To date, all ophthalmic data pertaining to vitamin D has been restricted primarily to tear and serum analysis in human patients. Considering the isolated nature of the eye, we sought to determine the presence of intraocular vitamin D in ocular disease. METHODS: 25-Hydroxyvitamin D3 (25(OH)D3) concentrations were measured in the eye and blood of 120 participants undergoing ophthalmic procedures. Ocular localization of the 1,25-dihydroxyvitamin D3-generating (CYP27B1) and deactivating (CYP24A1) hydroxylases was performed by immunohistochemistry. Gene expression of CYP27B1, CYP24A1 and VEGF-A was measured in eyes from patients with and without disease. RESULTS: 25(OH)D3 was quantified in 112 ocular samples. In 40 cataract patient samples, the average 25(OH)D3 concentration was 0.057 ng/mL, compared to 72 retinal disease patient samples, average of 0.502 ng/mL (p < 0.001). Intraocular 25(OH)D3 did not correlate with serum levels of 25(OH)D3. There was no difference between the level of 25(OH)D3 measured in the aqueous and vitreous humour. The vitamin D-specific CYPs 27B1 and 24A1, strongly localized to complementary regions of the ciliary body, retinal pigment epithelium and neural retina. Gene expression analysis confirmed retinal CYP27B1 correlated strongly with VEGF-A in eyes from diabetic patients (r = 0.92, p < 0.001). CONCLUSIONS: Our data confirms that vitamin D is present in the humours of the human eye and that local synthesis/degradation is possible via the ocular CYP27B1 and CYP24A1. This argues for a functional role for local vitamin D production and signaling in the eye and suggests that vitamin D may be an important intraocular mediator in disease pathogenesis.


Assuntos
Calcifediol/metabolismo , Oftalmopatias/metabolismo , Olho/metabolismo , Vitamina D/metabolismo , Vitaminas/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Estudos Transversais , Oftalmopatias/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Vitamina D3 24-Hidroxilase/metabolismo , Adulto Jovem
4.
Mol Pharm ; 15(8): 3216-3226, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-29902012

RESUMO

Mutation in the tyrosine kinase (TK) domain of the epidermal growth factor receptor ( EGFR) gene drives the development of lung cancer. EGFR tyrosine kinase inhibitors (EGFR TKIs), including erlotinib and afatinib, are initially effective in treating EGFR mutant nonsmall cell lung cancer (NSCLC). However, drug resistance quickly develops due to several mechanisms, including induction of the epithelial-mesenchymal transition (EMT). No effective therapies are currently available for patients who develop EMT-associated EGFR TKI resistance. 1,25-Dihydroxyvitamin D3 (1,25D3) promotes epithelial differentiation and inhibits growth of NSCLC cells. 1,25D3 thus represents a promising agent for the treatment of EMT-associated EGFR TKI resistance. However, 1,25D3 induces the expression of 24-hydroxylase (24OHase), which decreases 1,25D3 activity. CTA091, a potent and selective 24OHase inhibitor, has been developed to attenuate this adverse effect. CTA091 also suppresses renal 24OHase activity and so may promote hypercalcemia. To exploit favorable effects of 1,25D3 plus CTA091 in tumor cells while avoiding problematic systemic effects of 24OHase inhibition, we developed EGFR-targeted, liposomal nanoparticles (EGFR-LP) to offer tumor-targeted co-delivery of 1,25D3 and CTA091. We then established an EMT-associated model of EGFR TKI resistance, and showed that such nanoparticles improved cellular uptake of 1,25D3 and CTA091, drove pro-epithelial signaling by upregulating E-cadherin ( CDH1), and significantly inhibited the growth of EGFR TKI resistant cells. Our results demonstrated that the delivery of vitamin D-based drug payloads via tumor-targeted EGFR-LP has promise as a new therapy for EFGR TKI resistant lung cancer. Future studies will focus on in vivo evaluation of biological activity, therapeutic benefits, and systemic toxicity prior to clinical translation.


Assuntos
Calcitriol/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores Enzimáticos/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Combinação de Medicamentos , Resistencia a Medicamentos Antineoplásicos/genética , Ensaios de Seleção de Medicamentos Antitumorais , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Receptores ErbB/genética , Cloridrato de Erlotinib/farmacologia , Cloridrato de Erlotinib/uso terapêutico , Humanos , Lipossomos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Nanopartículas/química , Inibidores de Proteínas Quinases/uso terapêutico , Vitamina D3 24-Hidroxilase/antagonistas & inibidores , Vitamina D3 24-Hidroxilase/metabolismo
5.
J Clin Invest ; 126(2): 667-80, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26784541

RESUMO

CYP24A1 (hereafter referred to as CYP24) enzymatic activity is pivotal in the inactivation of vitamin D metabolites. Basal renal and extrarenal CYP24 is usually low but is highly induced by its substrate 1,25-dihydroxyvitamin D. Unbalanced high and/or long-lasting CYP24 expression has been proposed to underlie diseases like chronic kidney disease, cancers, and psoriasis that otherwise should favorably respond to supplemental vitamin D. Using genetically modified mice, we have shown that renal phosphate wasting hypophosphatemic states arising from high levels of fibroblast growth factor 23 (FGF23) are also associated with increased renal Cyp24 expression, suggesting that elevated CYP24 activity is pivotal to the pathophysiology of these disorders. We therefore crossed 2 mouse strains, each with distinct etiology for high levels of circulating FGF23, onto a Cyp24-null background. Specifically, we evaluated Cyp24 deficiency in Hyp mice, the murine homolog of X-linked dominant hypophosphatemic rickets, and transgenic mice that overexpress a mutant FGF23 (FGF23R176Q) that is associated with the autosomal dominant form of hypophosphatemic rickets. Loss of Cyp24 in these murine models of human disease resulted in near-complete recovery of rachitic/osteomalacic bony abnormalities in the absence of any improvement in the serum biochemical profile. Moreover, treatment of Hyp and FGF23R1760-transgenic mice with the CYP24 inhibitor CTA102 also ameliorated their rachitic bones. Our results link CYP24 activity to the pathophysiology of FGF23-dependent renal phosphate wasting states and implicate pharmacologic CYP24 inhibition as a therapeutic adjunct for their treatment.


Assuntos
Inibidores das Enzimas do Citocromo P-450/farmacologia , Fatores de Crescimento de Fibroblastos/metabolismo , Fosfatos/urina , Insuficiência Renal Crônica , Vitamina D3 24-Hidroxilase/antagonistas & inibidores , Síndrome de Emaciação , Animais , Modelos Animais de Doenças , Feminino , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/genética , Humanos , Camundongos , Camundongos Knockout , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/urina , Vitamina D3 24-Hidroxilase/genética , Vitamina D3 24-Hidroxilase/metabolismo , Síndrome de Emaciação/tratamento farmacológico , Síndrome de Emaciação/genética , Síndrome de Emaciação/patologia , Síndrome de Emaciação/urina
6.
Hum Mol Genet ; 22(4): 696-703, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23161670

RESUMO

Focal facial dermal dysplasia (FFDD) Type IV is a rare syndrome characterized by facial lesions resembling aplasia cutis in a preauricular distribution along the line of fusion of the maxillary and mandibular prominences. To identify the causative gene(s), exome sequencing was performed in a family with two affected siblings. Assuming autosomal recessive inheritance, two novel sequence variants were identified in both siblings in CYP26C1-a duplication of seven base pairs, which was maternally inherited, c.844_851dupCCATGCA, predicting p.Glu284fsX128 and a missense mutation, c.1433G>A, predicting p.Arg478His, that was paternally inherited. The duplication predicted a frameshift mutation that led to a premature stop codon and premature chain termination, whereas the missense mutation was not functional based on its in vitro expression in mammalian cells. The FFDD skin lesions arise along the sites of fusion of the maxillary and mandibular prominences early in facial development, and Cyp26c1 was expressed exactly along the fusion line for these facial prominences in the first branchial arch in mice. Sequencing of four additional, unrelated Type IV FFDD patients and eight Type II or III TWIST2-negative FFDD patients revealed that three of the Type IV patients were homozygous for the duplication, whereas none of the Type II or III patients had CYP26C1 mutations. The seven base pairs duplication was present in 0.3% of healthy controls and 0.3% of patients with other birth defects. These findings suggest that the phenotypic manifestations of FFDD Type IV can be non-penetrant or underascertained. Thus, FFDD Type IV results from the loss of function mutations in CYP26C1.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Displasia Ectodérmica/genética , Mutação de Sentido Incorreto , Animais , Células COS , Chlorocebus aethiops , Sistema Enzimático do Citocromo P-450/metabolismo , Família 26 do Citocromo P450 , Análise Mutacional de DNA , Displasia Ectodérmica/enzimologia , Displasias Dérmicas Faciais Focais , Mutação da Fase de Leitura , Estudos de Associação Genética , Humanos , Camundongos , Repetições de Microssatélites
7.
Mol Cell Endocrinol ; 355(1): 153-61, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22386975

RESUMO

Human lung tumors aberrantly express the 1α,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3))-catabolizing enzyme, CYP24. We hypothesized that CYP24 reduces 1,25(OH)(2)D(3)-mediated transcription and allows lung cancer cells to escape its growth-inhibitory action. To test this, H292 lung cancer cells and the CYP24-selective inhibitor CTA091 were utilized. In H292 cells, CTA091 reduces 1,25(OH)(2)D(3) catabolism, significantly increases 1,25(OH)(2)D(3)-mediated growth inhibition, and increases 1,25(OH)(2)D(3) effects on induced and repressed genes in gene expression profiling studies. Pathway mapping of repressed genes uncovered cell cycle as a predominant 1,25(OH)(2)D(3) target. In H292 cells, 1,25(OH)(2)D(3) significantly decreases cyclin E2 levels and induces G(0)/G(1) arrest. A broader set of cyclins is down-regulated when 1,25(OH)(2)D(3) is combined with CTA091, and cell cycle arrest further increases. Effects of CTA091 on 1,25(OH)(2)D(3) signaling are vitamin D receptor-dependent. These data provide evidence that CYP24 limits 1,25(OH)(2)D(3) anti-proliferative signaling in cancer cells, and suggest that CTA091 may be beneficial in preserving 1,25(OH)(2)D(3) action in lung cancer.


Assuntos
Calcitriol/farmacologia , Inibidores Enzimáticos/farmacologia , Neoplasias Pulmonares/enzimologia , Transdução de Sinais/efeitos dos fármacos , Esteroide Hidroxilases/antagonistas & inibidores , Calcitriol/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ciclinas/antagonistas & inibidores , Ciclinas/genética , Relação Dose-Resposta a Droga , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Esteroide Hidroxilases/metabolismo , Vitamina D3 24-Hidroxilase
8.
Steroids ; 77(5): 477-83, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22285938

RESUMO

The vitamin D(3) catabolizing enzyme, CYP24, is frequently over-expressed in tumors, where it may support proliferation by eliminating the growth suppressive effects of 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)). However, the impact of CYP24 expression in tumors or consequence of CYP24 inhibition on tumor levels of 1,25(OH)(2)D(3)in vivo has not been studied due to the lack of a suitable quantitative method. To address this need, an LC-MS/MS assay that permits absolute quantitation of 1,25(OH)(2)D(3) in plasma and tumor was developed. We applied this assay to the H292 lung tumor xenograft model: H292 cells eliminate 1,25(OH)(2)D(3) by a CYP24-dependent process in vitro, and 1,25(OH)(2)D(3) rapidly induces CYP24 expression in H292 cells in vivo. In tumor-bearing mice, plasma and tumor concentrations of 1,25(OH)(2)D(3) reached a maximum of 21.6 and 1.70ng/mL, respectively, following intraperitoneal dosing (20µg/kg 1,25(OH)(2)D(3)). When co-administered with the CYP24 selective inhibitor CTA091 (250µg/kg), 1,25(OH)(2)D(3) plasma levels increased 1.6-fold, and tumor levels increased 2.6-fold. The tumor/plasma ratio of 1,25(OH)(2)D(3) AUC was increased 1.7-fold by CTA091, suggesting that the inhibitor increased the tumor concentrations of 1,25(OH)(2)D(3) independent of its effects on plasma disposition. Compartmental modeling of 1,25(OH)(2)D(3) concentration versus time data confirmed that: 1,25(OH)(2)D(3) was eliminated from plasma and tumor; CTA091 reduced the elimination from both compartments; and that the effect of CTA091 on tumor exposure was greater than its effect on plasma. These results provide evidence that CYP24-expressing lung tumors eliminate 1,25(OH)(2)D(3) by a CYP24-dependent process in vivo and that CTA091 administration represents a feasible approach to increase tumor exposure to 1,25(OH)(2)D(3).


Assuntos
Cromatografia Líquida/métodos , Neoplasias Pulmonares/metabolismo , Espectrometria de Massas/métodos , Esteroide Hidroxilases/metabolismo , Vitamina D/análogos & derivados , Animais , Área Sob a Curva , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Estudos de Viabilidade , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esteroide Hidroxilases/antagonistas & inibidores , Esteroide Hidroxilases/genética , Vitamina D/sangue , Vitamina D/farmacocinética , Vitamina D3 24-Hidroxilase , Vitaminas/sangue , Vitaminas/metabolismo , Vitaminas/farmacocinética , Ensaios Antitumorais Modelo de Xenoenxerto
9.
J Cell Sci ; 124(Pt 16): 2723-34, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21807937

RESUMO

Cyp26b1, a retinoic acid (RA)-metabolising enzyme, is expressed in the developing limb bud, and Cyp26b1(-/-) mice present with severe limb defects. These malformations might be attributable to an RA-induced patterning defect; however, recent reports suggest that RA is dispensable for limb patterning. In this study, we examined the role of endogenous retinoid signalling in skeletogenesis using Cyp26b1(-/-) mice and transgenic mice in which Cyp26b1 is conditionally deleted under control of the Prrx1 promoter beginning at ~E9.5 (Prrx1Cre(+)/Cyp26b1(fl/fl)). We found that the limb phenotype in Prrx1Cre(+)/Cyp26b1(fl/fl) mice was less severe than that observed in Cyp26b1(-/-) animals and that a change in retinoid signalling contributed to the difference in phenotypes. We systematically examined the role of endogenous RA signalling in chondrogenesis and found that Cyp26b1(-/-) cells and limb mesenchymal cells treated with a CYP inhibitor, are maintained in a pre-chondrogenic state, exhibit reduced chondroblast differentiation and have modestly accelerated chondrocyte hypertrophy. Furthermore, Cyp26b1(-/-) mesenchyme exhibited an increase in expression of genes in a closely related tendogenic lineage, indicating that retinoid signals in the limb interfere with differentiation and maintain progenitor status. Together, these findings support an important function for RA in regulating the behaviour of mesenchymal progenitors, and their subsequent differentiation and maturation.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Extremidades/patologia , Células-Tronco Mesenquimais/metabolismo , Tretinoína/metabolismo , Animais , Padronização Corporal/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem da Célula/efeitos dos fármacos , Células Cultivadas , Condrogênese/genética , Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/genética , Inibidores Enzimáticos/farmacologia , Extremidades/embriologia , Extremidades/crescimento & desenvolvimento , Proteínas de Homeodomínio/genética , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Regiões Promotoras Genéticas/genética , Ácido Retinoico 4 Hidroxilase , Transdução de Sinais/genética , Transgenes/genética
10.
Birth Defects Res A Clin Mol Teratol ; 88(10): 883-94, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20842651

RESUMO

Retinoic acid (RA) is a pleiotropic derivative of vitamin A, or retinol, which is responsible for all of the bioactivity associated with this vitamin. The teratogenic influences of vitamin A deficiency and excess RA in rodents were first observed more than 50 years ago. Efforts over the last 15-20 years have refined these observations by defining the molecular mechanisms that control RA availability and signaling during murine embryonic development. This review will discuss our current understanding of the role of RA in teratogenesis, with specific emphasis on the essential function of the RA catabolic CYP26 enzymes in preventing teratogenic consequences caused by uncontrolled distribution of RA. Particular focus will be paid to the RA-sensitive tissues of the caudal and cranial regions, the limb, and the testis, and how genetic mutation of factors controlling RA distribution have revealed important roles for RA during embryogenesis.


Assuntos
Anormalidades Congênitas/enzimologia , Sistema Enzimático do Citocromo P-450/metabolismo , Desenvolvimento Embrionário , Tretinoína/metabolismo , Deficiência de Vitamina A/enzimologia , Animais , Anormalidades Congênitas/embriologia , Anormalidades Congênitas/metabolismo , Extremidades/embriologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Defeitos do Tubo Neural/induzido quimicamente , Defeitos do Tubo Neural/embriologia , Defeitos do Tubo Neural/enzimologia , Gravidez , Ácido Retinoico 4 Hidroxilase , Teratogênicos/metabolismo , Testículo/embriologia , Deficiência de Vitamina A/embriologia , Deficiência de Vitamina A/metabolismo
11.
Dev Dyn ; 238(5): 1140-9, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19334287

RESUMO

Precise regulation of the morphogen sonic hedgehog (Shh) and modulation of the Shh signaling pathway is required for proper specification of cell fate within the developing limbs and neural tube, and resultant tissue morphogenesis. Tulp3 (tubby-like protein 3) is a protein of unknown function which has been implicated in nervous system development through gene knockout studies. We demonstrate here that mice lacking the Tulp3 gene develop abnormalities of both the neural tube and limbs consistent with improper regulation of Shh signaling. Tulp3(-/-) embryos show expansion of Shh target gene expression and display a ventralization of neural progenitor cells in the caudal neural tube. We further show that Tulp3(-/-)/Shh(-/-) compound mutant embryos resemble Tulp3 mutants, and express Shh target genes in the neural tube and limbs which are not expressed in Shh(-/-) embryos. This work uncovers a novel role for Tulp3 as a negative regulatory factor in the Hh pathway.


Assuntos
Extremidades/embriologia , Proteínas Hedgehog/metabolismo , Defeitos do Tubo Neural/genética , Proteínas/metabolismo , Animais , Extremidades/crescimento & desenvolvimento , Extremidades/patologia , Proteínas Hedgehog/genética , Peptídeos e Proteínas de Sinalização Intercelular , Peptídeos e Proteínas de Sinalização Intracelular , Deformidades Congênitas dos Membros/genética , Camundongos , Camundongos Knockout , Tubo Neural/embriologia , Tubo Neural/crescimento & desenvolvimento , Tubo Neural/patologia , Defeitos do Tubo Neural/metabolismo , Receptores Patched , Proteínas/genética , Receptores de Superfície Celular/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
12.
Int J Cancer ; 119(8): 1819-28, 2006 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-16708384

RESUMO

1Alpha,25-dihydroxyvitamin D3 (1,25D3) displays potent antiproliferative activity in a variety of tumor model systems and is currently under investigation in clinical trials in cancer. Studies were initiated to explore its potential in nonsmall cell lung cancer (NSCLC), as effective approaches to the treatment of that disease are needed. In evaluating factors that may affect activity in NSCLC, the authors found that CYP24 (25-hydroxyvitamin D3-24-hydroxylase), the enzyme that catabolizes 1,25D3, is frequently expressed in NSCLC cell lines but not in the nontumorigenic bronchial epithelial cell line, Beas2B. CYP24 expression by RT-PCR was also detected in 10/18 primary lung tumors but in only 1/11 normal lung tissue specimens. Tumor-specific CYP24 upregulation was confirmed at the protein level via immunoblot analysis of patient-matched normal lung tissue and lung tumor extracts. Enzymatically active CYP24 is expected to desensitize NSCLC cells to 1,25D3. The authors therefore implemented a high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) assay for 1,25D3 and its CYP24-generated metabolites to determine whether NSCLC cells express active enzyme. Analysis of NSCLC cell cultures revealed time-dependent loss of 1,25D3 coincident with the appearance of CYP24-generated metabolites. MK-24(S)-S(O)(NH)-Ph-1, a specific inhibitor of CYP24, slowed the loss of 1,25D3 and increased 1,25D3 half-life. Furthermore, combination of 1,25D3 with MK-24(S)-S(O)(NH)-Ph-1 resulted in a significant decrease in the concentration of 1,25D3 required to achieve maximum growth inhibition in NSCLC cells. These data suggest that increased CYP24 expression in lung tumors restricts 1,25D3 activity and support the preclinical evaluation of CYP24 inhibitors for lung cancer treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Esteroide Hidroxilases/metabolismo , Vitamina D/metabolismo , Idoso , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Feminino , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/genética , Esteroide Hidroxilases/antagonistas & inibidores , Esteroide Hidroxilases/genética , Vitamina D/farmacologia , Vitamina D3 24-Hidroxilase
13.
Biochem J ; 392(Pt 1): 241-8, 2005 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16053444

RESUMO

Cyp26A1 encodes an RA (retinoic acid)-catabolizing CYP (cytochrome P450) protein that plays a critical role in regulating RA distribution in vivo. Cyp26A1 expression is inducible by RA, and the locus has previously been shown to contain a RARE (RA response element), R1, within the minimal promoter [Loudig, Babichuk, White, Abu-Abed, Mueller and Petkovich (2000) Mol. Endocrinol. 14, 1483-1497]. In the present study, we report the identification of a second functional RARE (R2) located 2.0 kb upstream of the Cyp26A1 transcriptional start site. Constructs containing murine sequences encompassing both R1 and R2 showed that these elements work together to generate higher transcriptional activity upon treatment with RA than those containing R1 alone. Inclusion of R2 also dramatically enhanced the sensitivity of reporter constructs to RA, as even treatment with 10(-8) M RA resulted in a 5-fold induction of reporter activity. Mutational analysis identified R2 as the functional element responsible for the increased RA inducibility of promoter constructs. The element was shown to bind RARgamma (RA receptor gamma)/RXRalpha (retinoid X receptor alpha) heterodimers in vitro, and inclusion of nuclear receptors in transfections boosted the transcriptional response. A construct containing both R1 and R2 was used to generate a stable luciferase reporter cell line that can be used as a tool to identify factors regulating Cyp26A1 expression. The analysis of R1 and R2 has led to the proposal that the two elements work synergistically to provide a maximal response to RA and that R2 is an upstream enhancer.


Assuntos
Sistema Enzimático do Citocromo P-450/biossíntese , Sistema Enzimático do Citocromo P-450/genética , Elementos de Resposta/genética , Transcrição Gênica/genética , Tretinoína/farmacologia , Animais , Sequência de Bases , Linhagem Celular Tumoral , Sequência Conservada/genética , Sistema Enzimático do Citocromo P-450/química , Indução Enzimática , Humanos , Camundongos , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , Ligação Proteica , Ácido Retinoico 4 Hidroxilase , Homologia de Sequência do Ácido Nucleico
14.
Mol Pharmacol ; 67(5): 1808-17, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15703382

RESUMO

Vitamin A deficiency has been associated with increased incidence of certain types of cancer; however, the mechanisms by which vitamin A depletion promotes tumorigenesis are poorly understood. In addition all-trans-retinoic acid (RA), the most active form of vitamin A metabolites, has been shown to limit carcinogenesis in animal models and to trigger programmed cell death (apoptosis) in certain types of tumor cells. On the other hand, we show here that various cell lines overexpressing CYP26A1, a cytochrome P450 enzyme specifically involved in the catabolic inactivation of RA, exhibit increased resistance to various apoptogenic factors, including death receptor ligands such as tumor necrosis factor-related apoptosis-inducing ligand. This resistance could be reversed by pretreatment with ketoconazole, a broad-spectrum inhibitor of cytochrome P450 enzymes. In addition, synthetic retinoids Am80 (4[(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)carbamoyl]benzoic acid) and Am580 [4(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphtamido)benzoic acid], which are resistant to CYP26A1 metabolism, can restore the sensitivity of these cells to apoptogens. Thus, these findings support the idea that CYP26 expression levels may play a role in determining cellular commitment to apoptosis, and increased RA metabolism may be at least partially responsible for these observed effects.


Assuntos
Apoptose/fisiologia , Sistema Enzimático do Citocromo P-450/biossíntese , Regulação Enzimológica da Expressão Gênica/fisiologia , Tretinoína/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Humanos , Ácido Retinoico 4 Hidroxilase
15.
J Biol Chem ; 279(1): 77-85, 2004 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-14532297

RESUMO

Retinoids are potent regulators of cell proliferation, cell differentiation, and morphogenesis and are important therapeutic agents in oncology and dermatology. The gene regulatory activity of endogenous retinoids is effected primarily by retinoic acid isomers (all-trans and 9-cis) that are synthesized from retinaldehyde precursors in a broad range of tissues and act as ligands for nuclear retinoic acid receptors. The catabolism of all-trans-retinoic acid (atRA) is an important mechanism of controlling RA levels in cell and tissues. We have previously identified two cytochrome P450s, P450RAI-1 and P450RAI-2 (herein named CYP26A1 and CYP26B1), which were shown to be responsible for catabolism of atRA both in the embryo and the adult. In this report, we describe the identification, molecular cloning, and substrate characterization of a third member of the CYP26 family, named CYP26C1. Transiently transfected cells expressing CYP26C1 convert atRA to polar water-soluble metabolites similar to those generated by CYP26A1 and -B1. Competition studies with all-trans, 13-cis, and 9-cis isomers of retinoic acid demonstrated that atRA was the preferred substrate for CYP26C1. Although CYP26C1 shares extensive sequence similarity with CYP26A1 and CYP26B1, its catalytic activity appears distinct from those of other CYP26 family members. Specifically, CYP26C1 can also recognize and metabolize 9-cis-RA and is much less sensitive than the other CYP26 family members to the inhibitory effects of ketoconazole. CYP26C1 is not widely expressed in the adult but is inducible by RA in HPK1a, transformed human keratinocyte cell lines. This third CYP26 member may play a specific role in catabolizing both all-trans and 9-cis isomers of RA.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Tretinoína/metabolismo , Adulto , Sequência de Aminoácidos , Linhagem Celular , Clonagem Molecular , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Família 26 do Citocromo P450 , Embrião de Mamíferos , Humanos , Isomerismo , Queratinócitos/enzimologia , Cinética , Dados de Sequência Molecular , Proteínas Recombinantes/metabolismo , Ácido Retinoico 4 Hidroxilase , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Tretinoína/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA