Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurosci Res ; 182: 25-31, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35688289

RESUMO

BAX is a Bcl-2 family protein acting on apoptosis. It also promotes mitochondrial fusion by interacting with the mitochondrial fusion protein Mitofusin (Mfn1 and Mfn2). Neuronal mitochondria are important for the development and modification of dendritic spines, which are subcellular compartments accommodating excitatory synapses in postsynaptic neurons. The abundance of dendritic mitochondria influences dendritic spine development. Mitochondrial fusion is essential for mitochondrial homeostasis. Here, we show that in the hippocampal neuron of BAX knockout mice, mitochondrial fusion is impaired, leading to decreases in mitochondrial length and total mitochondrial mass in dendrites. Notably, BAX knockout mice also have fewer dendritic spines and less cellular Adenosine 5'triphosphate (ATP) in dendrites. The spine and ATP changes are abolished by restoring mitochondria fusion via overexpressing Mfn1 and Mfn2. These findings indicate that BAX-mediated mitochondrial fusion in neurons is crucial for the development of dendritic spines and the maintenance of cellular ATP levels.


Assuntos
Espinhas Dendríticas , Dinâmica Mitocondrial , Trifosfato de Adenosina , Animais , Espinhas Dendríticas/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Camundongos , Proteínas Mitocondriais/metabolismo , Proteína X Associada a bcl-2/metabolismo
2.
FASEB J ; 35(1): e21092, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33378124

RESUMO

Myosin 18Aα is a myosin 2-like protein containing unique N- and C-terminal protein interaction domains that co-assembles with myosin 2. One protein known to bind to myosin 18Aα is ß-Pix, a guanine nucleotide exchange factor (GEF) for Rac1 and Cdc42 that has been shown to promote dendritic spine maturation by activating the assembly of actin and myosin filaments in spines. Here, we show that myosin 18A⍺ concentrates in the spines of cerebellar Purkinje neurons via co-assembly with myosin 2 and through an actin binding site in its N-terminal extension. miRNA-mediated knockdown of myosin 18A⍺ results in a significant defect in spine maturation that is rescued by an RNAi-immune version of myosin 18A⍺. Importantly, ß-Pix co-localizes with myosin 18A⍺ in spines, and its spine localization is lost upon myosin 18A⍺ knockdown or when its myosin 18A⍺ binding site is deleted. Finally, we show that the spines of myosin 18A⍺ knockdown Purkinje neurons contain significantly less F-actin and myosin 2. Together, these data argue that mixed filaments of myosin 2 and myosin 18A⍺ form a complex with ß-Pix in Purkinje neuron spines that promotes spine maturation by enhancing the assembly of actin and myosin filaments downstream of ß-Pix's GEF activity.


Assuntos
Espinhas Dendríticas/metabolismo , Miosinas/metabolismo , Células de Purkinje/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Animais , Espinhas Dendríticas/genética , Deleção de Genes , Camundongos , Miosina Tipo II/genética , Miosina Tipo II/metabolismo , Miosinas/genética , Fatores de Troca de Nucleotídeo Guanina Rho/genética
3.
JCI Insight ; 4(12)2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31217345

RESUMO

TRIOBP remodels the cytoskeleton by forming unusually dense F-actin bundles and is implicated in human cancer, schizophrenia, and deafness. Mutations ablating human and mouse TRIOBP-4 and TRIOBP-5 isoforms are associated with profound deafness, as inner ear mechanosensory hair cells degenerate after stereocilia rootlets fail to develop. However, the mechanisms regulating formation of stereocilia rootlets by each TRIOBP isoform remain unknown. Using 3 new Triobp mouse models, we report that TRIOBP-5 is essential for thickening bundles of F-actin in rootlets, establishing their mature dimensions and for stiffening supporting cells of the auditory sensory epithelium. The coiled-coil domains of this isoform are required for reinforcement and maintenance of stereocilia rootlets. A loss of TRIOBP-5 in mouse results in dysmorphic rootlets that are abnormally thin in the cuticular plate but have increased widths and lengths within stereocilia cores, and causes progressive deafness recapitulating the human phenotype. Our study extends the current understanding of TRIOBP isoform-specific functions necessary for life-long hearing, with implications for insight into other TRIOBPopathies.


Assuntos
Audição/fisiologia , Proteínas dos Microfilamentos/fisiologia , Estereocílios/fisiologia , Actinas/fisiologia , Animais , Surdez/etiologia , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/deficiência , Isoformas de Proteínas/fisiologia , Estereocílios/ultraestrutura
4.
Neuromolecular Med ; 21(3): 314-321, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31177362

RESUMO

Sideroflexin 1 (Sfxn1) is a mitochondrial serine transporter involved in one-carbon metabolism in blood and cancer cell lines. The expression of other Sfxn homologs varies across tissues implying that each homolog may have tissue-specific functions. RNA databases suggest that among the Sfxns, Sfxn3 may have a specific function in the brain. Here, we systematically analyzed the level, cellular distribution, and subcellular localization of Sfxn3 protein in the developing and adult rodent brain. We found that, in the cortex and hippocampus, Sfxn3 protein level is low at birth but increases during development and remains at a high level in the mature brains. Similarly, in cultured hippocampal neurons, Sfxn3 protein level is low in young neurons but increases as neurons mature. Sfxn3 protein level is much higher in neurons than in astrocytes. Within neurons, Sfxn3 localizes to mitochondria in all major neuronal compartments. Our results establish that Sfxn3 is a mitochondrial protein enriched in neurons wherein it is developmentally expressed. These findings provide a foundation for future research aimed at understanding the functions of Sfxn3 and one-carbon metabolism in neurons.


Assuntos
Química Encefálica , Proteínas de Transporte de Cátions/fisiologia , Proteínas Mitocondriais/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurônios/metabolismo , Animais , Astrócitos/metabolismo , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Proteínas de Transporte de Cátions/análise , Células Cultivadas , Córtex Cerebral/química , Córtex Cerebral/crescimento & desenvolvimento , Feminino , Hipocampo/química , Hipocampo/citologia , Hipocampo/crescimento & desenvolvimento , Masculino , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Microscopia Imunoeletrônica , Ratos , Frações Subcelulares/química
5.
J Neurosci ; 35(49): 16126-41, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26658865

RESUMO

The presence of Sonic Hedgehog (Shh) and its signaling components in the neurons of the hippocampus raises a question about what role the Shh signaling pathway may play in these neurons. We show here that activation of the Shh signaling pathway stimulates axon elongation in rat hippocampal neurons. This Shh-induced effect depends on the pathway transducer Smoothened (Smo) and the transcription factor Gli1. The axon itself does not respond directly to Shh; instead, the Shh signal transduction originates from the somatodendritic region of the neurons and occurs in neurons with and without detectable primary cilia. Upon Shh stimulation, Smo localization to dendrites increases significantly. Shh pathway activation results in increased levels of profilin1 (Pfn1), an actin-binding protein. Mutations in Pfn1's actin-binding sites or reduction of Pfn1 eliminate the Shh-induced axon elongation. These findings indicate that Shh can regulate axon growth, which may be critical for development of hippocampal neurons. SIGNIFICANCE STATEMENT: Although numerous signaling mechanisms have been identified that act directly on axons to regulate their outgrowth, it is not known whether signals transduced in dendrites may also affect axon outgrowth. We describe here a transcellular signaling pathway in embryonic hippocampal neurons in which activation of Sonic Hedgehog (Shh) receptors in dendrites stimulates axon growth. The pathway involves the dendritic-membrane-associated Shh signal transducer Smoothened (Smo) and the transcription factor Gli, which induces the expression of the gene encoding the actin-binding protein profilin 1. Our findings suggest scenarios in which stimulation of Shh in dendrites results in accelerated outgrowth of the axon, which therefore reaches its presumptive postsynaptic target cell more quickly. By this mechanism, Shh may play critical roles in the development of hippocampal neuronal circuits.


Assuntos
Axônios/fisiologia , Dendritos/metabolismo , Proteínas Hedgehog/metabolismo , Hipocampo/citologia , Neurônios/citologia , Transdução de Sinais/fisiologia , Animais , Axônios/ultraestrutura , Células Cultivadas , Dendritos/efeitos dos fármacos , Dendritos/ultraestrutura , Embrião de Mamíferos , Regulação da Expressão Gênica/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/farmacologia , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Neurônios/efeitos dos fármacos , Profilinas/genética , Profilinas/metabolismo , Transporte Proteico/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/genética , Receptor Smoothened , Fatores de Tempo , Proteína GLI1 em Dedos de Zinco
6.
Cell Rep ; 9(2): 712-27, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25310985

RESUMO

The appropriate trafficking of glutamate receptors to synapses is crucial for basic synaptic function and synaptic plasticity. It is now accepted that NMDA receptors (NMDARs) internalize and are recycled at the plasma membrane but also exchange between synaptic and extrasynaptic pools; these NMDAR properties are also key to governing synaptic plasticity. Scribble1 is a large PDZ protein required for synaptogenesis and synaptic plasticity. Herein, we show that the level of Scribble1 is regulated in an activity-dependent manner and that Scribble1 controls the number of NMDARs at the plasma membrane. Notably, Scribble1 prevents GluN2A subunits from undergoing lysosomal trafficking and degradation by increasing their recycling to the plasma membrane following NMDAR activation. Finally, we show that a specific YxxR motif on Scribble1 controls these mechanisms through a direct interaction with AP2. Altogether, our findings define a molecular mechanism to control the levels of synaptic NMDARs via Scribble1 complex signaling.


Assuntos
Complexo 2 de Proteínas Adaptadoras/metabolismo , Endossomos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células Cultivadas , Dados de Sequência Molecular , Neurônios/metabolismo , Ligação Proteica , Transporte Proteico , Proteólise , Ratos , Ratos Sprague-Dawley , Proteínas Supressoras de Tumor/química
7.
Ageing Res Rev ; 16: 66-82, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24910306

RESUMO

Here we review the examples of great longevity and potential immortality in the earliest animal types and contrast and compare these to humans and other higher animals. We start by discussing aging in single-celled organisms such as yeast and ciliates, and the idea of the immortal cell clone. Then we describe how these cell clones could become organized into colonies of different cell types that lead to multicellular animal life. We survey aging and longevity in all of the basal metazoan groups including ctenophores (comb jellies), sponges, placozoans, cnidarians (hydras, jellyfish, corals and sea anemones) and myxozoans. Then we move to the simplest bilaterian animals (with a head, three body cell layers, and bilateral symmetry), the two phyla of flatworms. A key determinant of longevity and immortality in most of these simple animals is the large numbers of pluripotent stem cells that underlie the remarkable abilities of these animals to regenerate and rejuvenate themselves. Finally, we discuss briefly the evolution of the higher bilaterians and how longevity was reduced and immortality lost due to attainment of greater body complexity and cell cycle strategies that protect these complex organisms from developing tumors. We also briefly consider how the evolution of multiple aging-related mechanisms/pathways hinders our ability to understand and modify the aging process in higher organisms.


Assuntos
Envelhecimento/fisiologia , Invertebrados/fisiologia , Longevidade , Fatores Etários , Animais , Evolução Biológica , Cilióforos/fisiologia , Cnidários/fisiologia , Humanos , Hydra/fisiologia , Platelmintos/fisiologia , Poríferos/fisiologia , Especificidade da Espécie , Leveduras/fisiologia
8.
J Neurosci ; 34(15): 5261-72, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24719104

RESUMO

Acetylcholine is a neuromodulatory transmitter that controls synaptic plasticity and sensory processing in many brain regions. The dorsal cochlear nucleus (DCN) is an auditory brainstem nucleus that integrates auditory signals from the cochlea with multisensory inputs from several brainstem nuclei and receives prominent cholinergic projections. In the auditory periphery, cholinergic modulation serves a neuroprotective function, reducing cochlear output under high sound levels. However, the role of cholinergic signaling in the DCN is less understood. Here we examine postsynaptic mechanisms of cholinergic modulation at glutamatergic synapses formed by parallel fiber axons onto cartwheel cells (CWCs) in the apical DCN circuit from mouse brainstem slice using calcium (Ca) imaging combined with two-photon laser glutamate uncaging onto CWC spines. Activation of muscarinic acetylcholine receptors (mAChRs) significantly increased the amplitude of both uncaging-evoked EPSPs (uEPSPs) and spine Ca transients. Our results demonstrate that mAChRs in CWC spines act by suppressing large-conductance calcium-activated potassium (BK) channels, and this effect is mediated through the cAMP/protein kinase A signaling pathway. Blocking BK channels relieves voltage-dependent magnesium block of NMDA receptors, thereby enhancing uEPSPs and spine Ca transients. Finally, we demonstrate that mAChR activation inhibits L-type Ca channels and thus may contribute to the suppression of BK channels by mAChRs. In summary, we demonstrate a novel role for BK channels in regulating glutamatergic transmission and show that this mechanism is under modulatory control of mAChRs.


Assuntos
Cálcio/metabolismo , Neurônios Colinérgicos/metabolismo , Núcleo Coclear/fisiologia , Espinhas Dendríticas/metabolismo , Potenciais Pós-Sinápticos Excitadores , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Animais , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio , Neurônios Colinérgicos/fisiologia , Núcleo Coclear/citologia , Núcleo Coclear/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Espinhas Dendríticas/fisiologia , Ácido Glutâmico/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos CBA , Bloqueadores dos Canais de Potássio/farmacologia , Receptores Muscarínicos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Sinapses/fisiologia
9.
J Neurosci ; 29(39): 12255-64, 2009 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-19793984

RESUMO

NRG1 and ERBB4 have emerged as some of the most reproducible schizophrenia risk genes. Moreover, the Neuregulin (NRG)/ErbB4 signaling pathway has been implicated in dendritic spine morphogenesis, glutamatergic synaptic plasticity, and neural network control. However, despite much attention this pathway and its effects on pyramidal cells have received recently, the presence of ErbB4 in these cells is still controversial. As knowledge of the precise locus of receptor expression is crucial to delineating the mechanisms by which NRG signaling elicits its diverse physiological effects, we have undertaken a thorough analysis of ErbB4 distribution in the CA1 area of the rodent hippocampus using newly generated rabbit monoclonal antibodies and ErbB4-mutant mice as negative controls. We detected ErbB4 immunoreactivity in GABAergic interneurons but not in pyramidal neurons, a finding that was further corroborated by the lack of ErbB4 mRNA in electrophysiologically identified pyramidal neurons as determined by single-cell reverse transcription-PCR. Contrary to some previous reports, we also did not detect processed ErbB4 fragments or nuclear ErbB4 immunoreactivity. Ultrastructural analysis in CA1 interneurons using immunoelectron microscopy revealed abundant ErbB4 expression in the somatodendritic compartment in which it accumulates at, and adjacent to, glutamatergic postsynaptic sites. In contrast, we found no evidence for presynaptic expression in cultured GAD67-positive hippocampal interneurons and in CA1 basket cell terminals. Our findings identify ErbB4-expressing interneurons, but not pyramidal neurons, as a primary target of NRG signaling in the hippocampus and, furthermore, implicate ErbB4 as a selective marker for glutamatergic synapses on inhibitory interneurons.


Assuntos
Receptores ErbB/biossíntese , Regulação Enzimológica da Expressão Gênica , Hipocampo/enzimologia , Interneurônios/enzimologia , Células Piramidais/enzimologia , Animais , Células Cultivadas , Receptores ErbB/deficiência , Receptores ErbB/genética , Hipocampo/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Células Piramidais/ultraestrutura , Coelhos , Ratos , Ratos Sprague-Dawley , Receptor ErbB-4 , Especificidade da Espécie , Ácido gama-Aminobutírico/fisiologia
10.
Neuron ; 57(6): 858-71, 2008 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-18367087

RESUMO

Matrix metalloproteases (MMPs) play a role in remodeling the extracellular matrix during brain development and have been implicated in synaptic plasticity. Here, we report that a member of the neuronal pentraxin (NP) family, neuronal pentraxin receptor (NPR), undergoes regulated cleavage by the MMP tumor necrosis factor-alpha converting enzyme (TACE). NPR is enriched at excitatory synapses where it associates with AMPA-type glutamate receptors (AMPAR) and enhances synaptogenesis. However, in response to activation of group 1 mGluRs (mGluR1/5), TACE cleaves NPR and releases the pentraxin domain from its N-terminal transmembrane domain. Cleaved NPR rapidly accumulates in endosomes where it colocalizes with AMPAR. This process is necessary for mGluR1/5-dependent LTD in hippocampal and cerebellar synapses. These observations suggest that cleaved NPR functions to "capture" AMPAR for endocytosis and reveal a bifunctional role of NPs in both synapse strengthening and weakening.


Assuntos
Proteínas ADAM/farmacologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Neurônios/efeitos dos fármacos , Receptores de Superfície Celular/metabolismo , Receptores de Glutamato Metabotrópico/fisiologia , Proteínas ADAM/metabolismo , Proteína ADAM17 , Animais , Animais Recém-Nascidos , Proteína C-Reativa/deficiência , Células Cultivadas , Cerebelo/citologia , Embrião de Mamíferos , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Hipocampo/citologia , Humanos , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/efeitos da radiação , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/deficiência , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Plasticidade Neuronal/efeitos da radiação , Neurônios/fisiologia , Técnicas de Patch-Clamp/métodos , Estrutura Terciária de Proteína/fisiologia , RNA Interferente Pequeno/farmacologia , Receptores de Superfície Celular/química , Receptores de Superfície Celular/deficiência , Transfecção
11.
J Comp Neurol ; 481(1): 58-69, 2005 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-15558718

RESUMO

Clathrin-coated vesicles mediate a variety of endocytosis pathways in cells, including endocytic events at synapses. AP180 and clathrin assembly lymphoid myeloid leukemia protein (CALM) are clathrin accessory proteins that promote the formation of clathrin-coated vesicles. Both proteins bind to membrane lipids through their epsin N-terminal homology domains and interact with clathrin and related protein components through their carboxyl-terminal peptide motifs. We examine their neuronal expression and synaptic distribution. We show that both proteins are detected in synapses but demonstrate different distribution patterns. AP180 is located predominantly in presynaptic profiles, whereas CALM is found nonselectively in pre- and postsynaptic profiles and also in perisynaptic processes. These observations reveal an unexpected relationship between AP180 and the presumed non-neuronal homologue CALM. We propose that both AP180 and CALM function as endocytic accessory proteins at synapses, but each may regulate distinct clathrin pathways.


Assuntos
Hipocampo/metabolismo , Proteínas Monoméricas de Montagem de Clatrina/metabolismo , Neurônios/metabolismo , Terminações Pré-Sinápticas/metabolismo , Sinapses/metabolismo , Animais , Células Cultivadas , Vesículas Revestidas por Clatrina/metabolismo , Endocitose/fisiologia , Hipocampo/ultraestrutura , Neurônios/ultraestrutura , Células PC12 , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA