Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 448: 139101, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38537552

RESUMO

Green technologies based on microwaves have been developed by the food industry to produce organoleptically acceptable fruit juices without preliminary processing. Microwave irradiation coupled with hydrodiffusion and gravity (MHG) combines microwave heating with the earth's gravity, allowing the collection of hydrophilic substances released from the irradiated matrix. To the best of our knowledge, MHG extraction has never been experimented to produce pomegranate juice. In this work, we have evaluated it as a potential alternative to the conventional squeezing. A central composite design study (CCD) allowed the selection of the best extractive conditions (irradiation power and extraction time) to obtain a pomegranate juice with higher yield, polyphenol (e.g., catechin and delphinidin-3,5-glucoside) content, and related bioactivities (antioxidant and antidiabetic) than the one obtained by squeezing while maintaining the chemical-physical properties. Thus, this technique appears to be a functional alternative to producing high value pomegranate juice.

2.
Pest Manag Sci ; 80(3): 967-977, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37822147

RESUMO

BACKGROUND: Tetranychus urticae Koch, is a polyphagous and damaging pest, presenting several resistant populations worldwide. Among new and more environmentally friendly control tools, botanical pesticides represent a valuable alternative to synthetic ones within integrated pest management strategies. Accordingly, we investigated the lethal and sublethal effects of carlina oxide isolated from Carlina acaulis (Asteraceae) roots on T. urticae and its natural enemy, the predatory mite, Neoseiulus californicus (McGregor). RESULTS: Carlina oxide (98.7% pure compound) was used for acaricidal tests on eggs, nymphs, and adult females of T. urticae (concentrations of 312.5, 625, 1250, 2500 and 5000 µL L-1 ), and eggs and females of N. californicus (1250 and 5000 µL L-1 on eggs and females, respectively). Behavioral two-choice tests were also conducted on phytoseiid females. Carlina oxide toxicity was higher on T. urticae females than nymphs (median lethal dose 1145 and 1825 µL L-1 , respectively), whereas egg mortality and mean hatching time were significantly affected by all tested concentrations. A decreasing daily oviposition rate for T. urticae was recorded with concentrations ranging from 625 to 5000 µL L-1 , whereas negative effects on the population growth rate were recorded only with the three higher concentrations (1250, 2500 and 5000 µL L-1 ). No toxic effect on N. californicus females was found, but a strong repellent activity lasting for 48 h from application was recorded. CONCLUSION: Carlina oxide reduced longevity and fecundity of T. urticae adults, but not of N. californicus. This selective property allows us to propose it as a novel active ingredient of ecofriendly acaricides for T. urticae management. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Acaricidas , Alcinos , Furanos , Ácaros , Tetranychidae , Animais , Feminino , Controle Biológico de Vetores , Comportamento Predatório , Ninfa
3.
Environ Sci Pollut Res Int ; 30(41): 94904-94927, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37542017

RESUMO

Developing sustainable control tools for managing noxious pests attacking stored foodstuffs is a timely research challenge. Acmella oleracea (L.) R. K. Jansen is a crop widely cultivated for its multiple usages on an industrial level. In this study, the extracts prepared with A. oleracea aerial parts were applied on wheat kernels for the management of eight important arthropod pests attacking stored products, i.e., Cryptolestes ferrugineus, Tenebrio molitor, Oryzaephilus surinamensis, Trogoderma granarium, Tribolium castaneum, Tribolium confusum, Alphitobius diaperinus (adults/larvae), and Acarus siro (adults/nymphs). Extraction of A. oleracea was optimized on the base of the yield and content of spilanthol and other N-alkylamides which were analysed by HPLC-DAD-MS. Two concentrations of n-hexane or methanol extracts (500 ppm and 1000 ppm), obtained through Soxhlet extraction, were tested to acquire mortality data on the above-mentioned pests after 4, 8, and 16 h and 1 to 7 days of exposure. Both extracts achieved complete mortality (100.0%) of C. ferrugineus adults. In the case of A. diaperinus adults, mortalities were very low at any concentrations of both extracts. In general, the n-hexane extract was more efficient than methanol extract against almost all species and stages. Considering both extracts, the susceptibility order, from most to least susceptible species/stage, was C. ferrugineus adults > A. diaperinus larvae > C. ferrugineus larvae > T. granarium adults > T. molitor larvae > O. surinamensis adults > O. surinamensis larvae > T. confusum larvae > T. castaneum larvae > A. siro adults > T. molitor adults > A. siro nymphs > T. granarium larvae > T. castaneum adults > T. confusum adults > A. diaperinus adults. Our research provides useful knowledge on the efficacy of N-alkylamides-rich A. oleracea extracts as grain protectants, pointing out the importance of targeting the most susceptible species/ developmental stages.


Assuntos
Artrópodes , Besouros , Inseticidas , Praguicidas , Animais , Metanol , Larva
4.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-37259338

RESUMO

The prevention of nicotinamide adenine dinucleotide (NAD) biosynthesis is considered an attractive therapeutic approach against cancer, considering that tumor cells are characterized by an increased need for NAD to fuel their reprogrammed metabolism. On the other hand, the decline of NAD is a hallmark of some pathological conditions, including neurodegeneration and metabolic diseases, and boosting NAD biosynthesis has proven to be of therapeutic relevance. Therefore, targeting the enzymes nicotinamide phosphoribosyltransferase (NAMPT) and nicotinate phosphoribosyltransferase (NAPRT), which regulate NAD biosynthesis from nicotinamide (NAM) and nicotinic acid (NA), respectively, is considered a promising strategy to modulate intracellular NAD pool. While potent NAMPT inhibitors and activators have been developed, the search for NAPRT modulators is still in its infancy. In this work, we report on the identification of a new class of NAPRT modulators bearing the 1,2-dimethylbenzimidazole scaffold properly substituted in position 5. In particular, compounds 24, 31, and 32 emerged as the first NAPRT activators reported so far, while 18 behaved as a noncompetitive inhibitor toward NA (Ki = 338 µM) and a mixed inhibitor toward phosphoribosyl pyrophosphate (PRPP) (Ki = 134 µM). From in vitro pharmacokinetic studies, compound 18 showed an overall good ADME profile. To rationalize the obtained results, docking studies were performed on the NAPRT structure. Moreover, a preliminary pharmacophore model was built to shed light on the shift from inhibitors to activators.

5.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37111390

RESUMO

In recent years, agrochemical industries have been focused on the development of essential oil (EO)-based biopesticides, which can be considered valuable alternatives to traditional chemical products. The genus Mentha (Lamiaceae) comprises 30 species characterized by a wide range of biological activities, and some of their EOs showed good potential as pesticidal agents. In this regard, the aim of this study was to evaluate the insecticidal activity of the EO obtained from a rare linalool/linalool acetate chemotype of Mentha aquatica L. The EO was found to be highly effective against Culex quinquefasciatus (Say) 2nd instar larvae, Metopolophium dirhodum (Walker) adults, Spodoptera littoralis (Boisduval) 2nd instar larvae, and Tetranychus urticae (Koch) adults, showing lethal concentrations (LC50) or doses (LD50) of 31.5 ± 2.2 µL L-1, 4.9 ± 0.8 mL L-1, 18.5 ± 2.1 µg larvae-1, and 3.3 ± 0.5 mL L-1, respectively. On the contrary, Musca domestica L. adults and 3rd instar larvae of C. quinquefasciatus and S. littoralis were moderately affected by the treatment (LC50 or LD50: 71.4 ± 7.2 µg adult-1, 79.4 ± 5.2 µL L-1, 44.2 ± 5.8 µg larvae-1, respectively). The results obtained in this work demonstrated that various insects and pests could be differently sensible to the same EO and may lead to the exploitation of this plant or its major volatile compounds as novel ingredients of botanical insecticides and pesticides.

6.
Plants (Basel) ; 12(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36840161

RESUMO

Essential oil (EO)-based nanoemulsions (NEs) are promising grain protectants in the management of stored-product pests. However, the potential impact of the stored-grain species on the green insecticide effectiveness has been poorly studied. In this study, two concentrations of EO-based NEs from Carlina acaulis L., Mentha longifolia (L.) Huds., and Hazomalania voyronii (Jum.) Capuron were evaluated as insecticides against the major stored-product pest Sitophilus oryzae (L.) on barley, oats, and maize kernels. The C. acaulis EO-based NE applied at 1000 ppm on barley achieved the highest mortality, killing 94.4% of S. oryzae adults after a 7-day exposure, followed by 1000 ppm of H. voyronii EO-based NE (83.3%). The lowest mortality (1.1%) was recorded with 500 ppm of M. longifolia EO-based NE on maize after the same interval. All tested NEs exhibited elevated efficacy when applied on barley, while mortalities were lower on oats and maize. Furthermore, C. acaulis EO-based NE was the most effective when applied on all commodities, followed by H. voyronii and M. longifolia EO-based NEs. Overall, our results highlighted the significant impact of the stored cereal on the insecticidal effectiveness of EO-based NE used for stored-product pest control. Sitophilus oryzae adults on barley can be adequately controlled through the application of C. acaulis and H. voyronii EO-based NEs.

7.
Molecules ; 28(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36770640

RESUMO

The maintenance of a proper NAD+ pool is essential for cell survival, and tumor cells are particularly sensitive to changes in coenzyme levels. In this view, the inhibition of NAD+ biosynthesis is considered a promising therapeutic approach. Current research is mostly focused on targeting the enzymes nicotinamide phosphoribosyltransferase (NAMPT) and nicotinate phosphoribosyltransferase (NAPRT), which regulate NAD+ biosynthesis from nicotinamide and nicotinic acid, respectively. In several types of cancer cells, both enzymes are relevant for NAD+ biosynthesis, with NAPRT being responsible for cell resistance to NAMPT inhibition. While potent NAMPT inhibitors have been developed, only a few weak NAPRT inhibitors have been identified so far, essentially due to the lack of an easy and fast screening assay. Here we present a continuous coupled fluorometric assay whereby the product of the NAPRT-catalyzed reaction is enzymatically converted to NADH, and NADH formation is measured fluorometrically. The assay can be adapted to screen compounds that interfere with NADH excitation and emission wavelengths by coupling NADH formation to the cycling reduction of resazurin to resorufin, which is monitored at longer wavelengths. The assay system was validated by confirming the inhibitory effect of some NA-related compounds on purified human recombinant NAPRT. In particular, 2-hydroxynicotinic acid, 2-amminonicotinic acid, 2-fluoronicotinic acid, pyrazine-2-carboxylic acid, and salicylic acid were confirmed as NAPRT inhibitors, with Ki ranging from 149 to 348 µM. Both 2-hydroxynicotinic acid and pyrazine-2-carboxylic acid were found to sensitize OVCAR-5 cells to the NAMPT inhibitor FK866 by decreasing viability and intracellular NAD+ levels.


Assuntos
NAD , Niacina , Humanos , NAD/metabolismo , Linhagem Celular Tumoral , Pentosiltransferases , Nicotinamida Fosforribosiltransferase , Citocinas/metabolismo , Niacina/farmacologia
8.
Plants (Basel) ; 12(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36771706

RESUMO

Recently, microwave-assisted hydrodistillation (MAH) has been reported as an innovative technique leading to increased essential oil (EO) extraction yield, coupled with reduced extraction time and energy costs. The EO of Carlina acaulis L. (Asteraceae), mainly constituted by carlina oxide (>95%) and conventionally obtained through traditional hydrodistillation (HD), has been reported as extremely effective against several arthropod vectors and pests of medical and economic importance with limited impact on non-target species, including mammals. This study aimed to the optimization of the EO extraction through MAH by using a one-step design of experiments (DoE) approach that allowed us to relate the characteristics of the produced EOs with the applied experimental conditions using mathematical models. The preliminary screening allowed us to optimize the protocol only by the extraction time, skipping complex data analysis. Moreover, the comparison of the optimized MAH conditions with traditional HD pointed out the higher efficiency of MAH in terms of EO yield (0.65 and 0.49% for MAH and HD, respectively) and extraction time (210 min for MAH). The results obtained confirmed the promising role that MAH could have in C. acaulis EO extraction, with increased yield and reduced extraction time, water consumption, and energy costs, and being employable on an industrial scale, with special reference to insecticidal and acaricidal formulations.

9.
Pharmaceuticals (Basel) ; 15(12)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36558962

RESUMO

This work aimed to evaluate the chemical composition, insecticidal and acaricidal potential of the essential oil (EO) obtained from the resurrection plant Myrothamnus moschatus (Baill.) Baill. (Myrothamnaceae) from Madagascar. The EO bioactivity was evaluated against selected arthropod pests and vectors of agricultural and public health relevance. The most abundant volatile compounds were trans-pinocarveol (37.7 ± 4.2%) and pinocarvone (20.8 ± 3.1%), similar to the EO of the chemotype collected from the same region. Lethal concentrations (LC50) or doses (LD50) from acute toxicity tests were estimated for Musca domestica (L.) adults at 22.7 µg adult-1, for Spodoptera littoralis (Boisduval) larvae at 35.6 µg larva-1, for Culex quinquefasciatus (Say) at 43.6 µg mL-1, for adults of Metopolophium dirhodum (Walker) at 2.4 mL L-1, and for adults of Tetranychus urticae (Koch) at 1.2 mL L-1. The good insecticidal and acaricidal activities determined in this work may open a new perspective on the use of this plant as a source of botanical insecticide ingredients. The exploitation of this species could also be important for the African economy, helping local farmers cultivating this plant.

10.
Plants (Basel) ; 11(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36145754

RESUMO

Recently, spices have attracted the attention of scientists and agrochemical companies for their potential as insecticidal and acaricidal agents, and even as repellents to replace synthetic compounds that are labeled with detrimental impacts on environment and human and animal health. In this framework, the aim of this study was to evaluate the insecticidal potential of the essential oils (EOs) obtained from three Cameroonian aromatic plants, namely Monodora myristica (Gaertn.) Dunal, Xylopia aethiopica (Dunal) A. Rich., and Aframomum citratum (J. Pereira) K. Schum. They were produced by hydrodistillation, with yields of 3.84, 4.89, and 0.85%, respectively. The chemical composition was evaluated by GC-MS analysis. The EOs and their major constituents (i.e., geraniol, sabinene, α-pinene, p-cymene, α-phellandrene, and ß-pinene) were tested against the polyphagous moth pest, i.e., Spodoptera littoralis (Boisd.), the common housefly, Musca domestica L., and the filariasis and arbovirus mosquito vector, Culex quinquefasciatus Say. Our results showed that M. myristica and X. aethiopica EOs were the most effective against M. domestica adults, being effective on both males (22.1 µg adult-1) and females (LD50: 29.1 µg adult-1). The M. myristica EO and geraniol showed the highest toxicity on S. littoralis, with LD50(90) values of 29.3 (123.5) and 25.3 (83.2) µg larva-1, respectively. Last, the EOs from M. myristica and X. aethiopica, as well as the major constituents p-cymene and α-phellandrene, were the most toxic against C. quinquefasciatus larvae. The selected EOs may potentially lead to the production of cheap and effective botanical insecticides for African smallholders, although the development of effective formulations, a safety evaluation, and an in-depth study of their efficacy on different insect species are needed.

11.
Plants (Basel) ; 11(15)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35956490

RESUMO

Patagonia is a geographical area characterized by a wide plant biodiversity. Several native plant species are traditionally used in medicine by the local population and demonstrated to be sources of biologically active compounds. Due to the massive need for green and sustainable pesticides, this study was conducted to evaluate the insecticidal activity of essential oils (EOs) from understudied plants growing in this propitious area. Ciprés (Pilgerodendron uviferum), tepa (Laureliopsis philippiana), canelo (Drimys winteri), and paramela (Adesmia boronioides) EOs were extracted through steam distillation, and their compositions were analyzed through GC−MS analysis. EO contact toxicity against Musca domestica L., Spodoptera littoralis (Boisd.), and Culex quinquefasciatus Say was then evaluated. As a general trend, EOs performed better on housefly males over females. Ciprés EO showed the highest insecticidal efficacy. The LD50(90) values were 68.6 (183.7) and 11.3 (75.1) µg adult−1 on housefly females and males, respectively. All EOs were effective against S. littoralis larvae; LD50 values were 33.2−66.7 µg larva−1, and tepa EO was the most effective in terms of LD90 (i.e., <100 µg larva−1). Canelo, tepa, and paramela EOs were highly effective on C. quinquefasciatus larvae, with LC50 values < 100 µL L−1. Again, tepa EO achieved LD90 < 100 µL L−1. This EO was characterized by safrole (43.1%), linalool (27.9%), and methyl eugenol (6.9%) as major constituents. Overall, Patagonian native plant EOs can represent a valid resource for local stakeholders, to develop effective insecticides for pest and vector management, pending a proper focus on their formulation and nontarget effects.

12.
Plants (Basel) ; 11(7)2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35406871

RESUMO

New hemp (Cannabis sativa L.) strains developed by crossbreeding selected varieties represent a novel research topic worthy of attention and investigation. This study focused on the phytochemical characterization of nine hemp commercial cultivars. Hydrodistillation was performed in order to collect the essential oils (EO), and also the residual water and deterpenated biomass. The volatile fraction was analyzed by GC-FID, GC-MS, and SPME-GC-MS, revealing three main chemotypes. The polyphenolic profile was studied in the residual water and deterpenated biomass by spectrophotometric assays, and HPLC-DAD-MSn and 1H-NMR analyses. The latter were employed for quali-quantitative determination of cannabinoids in the deterpenated material in comparison with the one not subjected to hydrodistillation. In addition, the glandular and non-glandular indumentum of the nine commercial varieties was studied by means of light microscopy and scanning electron microscopy in the attempt to find a possible correlation with the phytochemical and morphological traits. The EO and residual water were found to be rich in monoterpene and sesquiterpene hydrocarbons, and flavonol glycosides, respectively, while the deterpenated material was found to be a source of neutral cannabinoids. The micromorphological survey allowed us to partly associate the phytochemistry of these varieties with the hair morphotypes. This research sheds light on the valorization of different products from the hydrodistillation of hemp varieties, namely, essential oil, residual water, and deterpenated biomass, which proved to be worthy of exploitation in industrial and health applications.

13.
J Sci Food Agric ; 102(14): 6220-6235, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35485728

RESUMO

BACKGROUND: Solvent-free microwave-assisted extraction (MAE) is a green extraction method capable of boosting the yield and quality profile of hemp essential oil when compared with other conventional extraction techniques. During this process, two by-products are produced, namely the aqueous residue containing bioactive phenolics and the residual deterpenated biomass, which can be used for further extraction and purification of phytocannabinoids. To date, the hemp industry has not utilized these products, although they can be valuable for the food, cosmetic, nutraceutical and pharmaceutical market. RESULTS: This study assessed and optimized the variables affecting MAE efficiency, namely microwave irradiation power, extraction time and added water, which were studied using a central composite design approach, and results were used to optimize the extraction process for recovering three valuable fractions: essential oil, polyphenols and phytocannabinoids. The products obtained using the optimized conditions were characterized in terms of yield, chemical profile and antioxidant potential. Moreover, the by-products obtained during the optimized run were further analyzed in terms of their biological activity using both enzymatic and non-enzymatic assays. The aqueous residue demonstrated a powerful α-glucosidase inhibition, a good activity in terms of superoxide radical scavenging activity, a modest efficacy in terms of inhibition of advanced glycation end products formation and no activity in terms of lipase inhibition. The residual deterpenated biomass did not possess significant biological activity. CONCLUSION: This work demonstrated valorization of industrial hemp essential oil and its by-products, obtained by a sustainable and eco-friendly extraction method, through an almost waste-free approach. Cannabinoids as well as other valuable bioactive compounds such as glycosidic flavones may be recovered from the residues of the essential oil extraction, representing interesting substances in the pharmaceutical, cosmetic and nutraceutical fields. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Canabinoides , Cannabis , Flavonas , Óleos Voláteis , Antioxidantes/análise , Canabinoides/química , Cannabis/química , Produtos Finais de Glicação Avançada , Lipase , Micro-Ondas , Superóxidos , Água , alfa-Glucosidases
14.
Pest Manag Sci ; 78(6): 2434-2442, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35306735

RESUMO

BACKGROUND: Plant essential oils (EOs) represent eco-friendly alternatives to conventional insecticides for managing pest populations. Carlina acaulis root EO showed a wide insecticidal spectrum, being highly effective against insect pests and vectors, coupled with low mammal toxicity. To boost the chemico-physical properties of this EO and its main active ingredient, carlina oxide, C. acaulis EO was encapsulated in a nanoemulsion [NE, 6% EO (w/w)], and its insecticidal properties evaluated against larvae and adults of Tribolium castaneum, Tribolium confusum and Tenebrio molitor. Two NE concentrations (500 and 1000 ppm) were applied on stored wheat. Mortality was determined after 4, 8 and 16 h and 1, 2, 3, 4, 5, 6 and 7 days. RESULTS: The NE was toxic to larvae of T. castaneum and T. confusum, killing 93.9% and 98.9% at 1000 ppm after 7 days of exposure, respectively. Tenebrio molitor larvae were tolerant: only 18.9% were dead after 7 days of exposure on stored wheat treated with 1000 ppm NE. However, the NE exhibited high adulticidal activity leading to 85.2% mortality at 1000 ppm, 7 days post-exposure. The mortalities of T. confusum and T. castaneum adults were low (21.4% and 23.3% respectively) at 1000 ppm, 7 days post-exposure. CONCLUSIONS: A NE based on C. acaulis EO could be regarded as an efficacious green adulticide or larvicide, depending on the target insect species and its life stage, advancing and specifying the pest management strategies of the tested species in an eco-friendly way. © 2022 Society of Chemical Industry.


Assuntos
Asteraceae , Besouros , Inseticidas , Óleos Voláteis , Tribolium , Animais , Grão Comestível , Insetos , Inseticidas/química , Inseticidas/farmacologia , Larva , Mamíferos , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Triticum
15.
Chemosphere ; 287(Pt 2): 132089, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34509765

RESUMO

Plant essential oil-based insecticides, with special reference to those that may be obtained from largely available biomasses, represent a valuable tool for Integrated Pest Management. However, the sublethal effects and the potential effects on aggressive insect traits of these green insecticides are understudied. Herein, the lethal and sub-lethal effects of the carlina oxide, constituting more than 97% of the whole Carlina acaulis (Asteraceae) root essential oil (EO), were determined against an invasive polyphagous tephritid pest, Ceratitis capitata (medfly). The carlina oxide was formulated in a mucilaginous solution containing carboxymethylcellulose sodium salt, sucrose, and hydrolysed proteins, showing high ingestion toxicity on medfly adults. The behavioural effects of carlina oxide at LC10 and LC30 were evaluated on the medfly aggressive traits, which are crucial for securing reproductive success in both sexes. Insecticide exposure affected the directionality of aggressive actions, but not the aggression escalation intensity and duration. The EO safety to mammals was investigated by studying its acute toxicity on the stomach, liver, and kidney of rats after oral administration. Only the highest dose (1000 mg/kg) of the EO caused modest neurological signs and moderate effects on the stomach, liver, and kidney. The other doses, which are closer to the practical use of the EO when formulated in protein baits, did not cause side effects. Overall, C. acaulis-based products are effective and safe to non-target mammals, deserving further consideration for eco-friendly pesticide formulations.


Assuntos
Asteraceae , Ceratitis capitata , Inseticidas , Óleos Voláteis , Animais , Inseticidas/toxicidade , Mamíferos , Óleos Voláteis/toxicidade , Ratos
16.
Antibiotics (Basel) ; 10(12)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34943662

RESUMO

Plants are considered to be an excellent source of new compounds with antibiotic activity. Carlina acaulis L. is a medicinal plant whose essential oil (EO) is mainly characterized by the polyacetylene carlina oxide, which has antimicrobial properties. The aim of this study was to evaluate the antimicrobial and antifungal activities of C. acaulis EO, carlina oxide, and nanoemulsion (NE) containing the EO. The EO was obtained through plant roots hydrodistillation, and carlina oxide was purified from it through silica gel column chromatography. The NE containing C. acaulis EO was prepared with the high-pressure homogenization method, and the minimum inhibitory concentration (MIC) was determined against several bacterial and fungal strains for all the C. acaulis-derived products. The latter resulted active versus all the screened Gram-positive bacterial strains and also on all the fungal strains with low MIC values. For yeast, the EO and carlina oxide showed good MIC values. The EO-NE demonstrated a better activity than the pure EO on all the tested bacterial and fungal strains. The results suggest that C. acaulis-derived products could be potential candidates for the development of natural antibacterial and antifungal agents.

17.
Antibiotics (Basel) ; 10(11)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34827351

RESUMO

This study aimed to investigate the susceptibility of Trypanosoma brucei to the Anthriscus nemorosa essential oils (EOs), isolated compounds from these oils, and artificial mixtures of the isolated compounds in their conventional and nanoencapsulated forms. The chemical composition of the essential oils from the aerial parts and roots of Anthriscus nemorosa, obtained from a wild population growing in central Italy, were analyzed by gas chromatography/mass spectrometry (GC/MS). In both cases, the predominant class of compounds was monoterpene hydrocarbons, which were more abundant in the EOs from the roots (81.5%) than the aerial parts (74.0%). The overall results of this work have shed light on the biological properties of A. nemorosa EO from aerial parts (EC50 = 1.17 µg/mL), farnesene (EC50 = 0.84 µg/mL), and artificial mixtures (Mix 3-5, EC50 in the range of 1.27 to 1.58 µg/mL) as relevant sources of antiprotozoal substances. Furthermore, the pool measurements of ADP (adenosine diphosphate) and NTPs (nucleoside triphosphates) in the cultivated bloodstream form of trypanosomes exposed to different concentrations of EOs showed a disturbed energy metabolism, as indicated by increased pools of ADP in comparison to ATP (adenosine triphosphate) and other NTPs. Ultimately, this study highlights the significant efficacy of A. nemorosa EO to develop long-lasting and effective antiprotozoal formulations, including nanoemulsions.

18.
Insects ; 12(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34680649

RESUMO

Among botanical insecticides based on essential oils (EOs) or their main components, Carlina acaulis EO and the aromatic polyacetylene carlina oxide, constituting more than 90% of its EO, were recently proven to be effective against the larvae and adults of some insect vectors and pests. In this study, the toxicity of C. acaulis EO and carlina oxide were tested on Bactrocera oleae adults using a protein bait formulation. The LC50 values of the C. acaulis EO and carlina oxide were 706 ppm and 1052 ppm, respectively. Electroantennographic (EAG) tests on B. oleae adults showed that both carlina EO and oxide elicited EAG dose-dependent responses in male and female antennae. The responses to the EO were significantly higher than those to carlina oxide, indicating that other compounds, despite their lower concentrations, can play a relevant role. Moreover, Y-tube assays carried out to assess the potential attractiveness or repellency of carlina oxide LC90 to B. oleae adults showed that it was unattractive to both males and females of B. oleae, and the time spent by both sexes in either the control or the treatment arm did not differ significantly. Overall, this study points out the potential use of C. acaulis EO and carlina oxide for the development of green and effective "lure-and-kill" tools.

19.
Pharmaceuticals (Basel) ; 14(8)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34451913

RESUMO

Ajowan (Trachyspermum ammi L.) is a spice traditionally used in Middle Eastern medicine and contains a valuable essential oil (EO) exploited in different fields, such as pharmaceutics, agrochemicals and food additives. This EO is mostly characterized by the thymol to which most of its biological properties are related. Given the economic value of ajowan and its increasing demand across the globe, the extraction method used for its EO is of paramount importance in terms of quality and quantity of the final product. In the present study, we used the design of experiment (DoE) approach to study and optimize the extraction of the ajowan EO using the microwave-assisted extraction (MAE), a novel extraction technique with high efficiency, low energy consumption, short process length and low environmental impact. A two-step DoE (screening followed by surface response methodology) was used to reduce the number of experiments and to improve the cost/benefit ratio. Reliable mathematical models, relating the more relevant EO features with the extraction conditions, were obtained and used to identify the best experimental conditions able to maximize the yield and thymol concentration. The optimized MAE procedure assures an EO with a higher yield and thymol amount compared with the standard hydrodistillation procedure.

20.
Nanomaterials (Basel) ; 10(9)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32961890

RESUMO

The growing interest in the development of green pest management strategies is leading to the exploitation of essential oils (EOs) as promising botanical pesticides. In this respect, nanotechnology could efficiently support the use of EOs through their encapsulation into stable nanoformulations, such as nanoemulsions (NEs), to improve their stability and efficacy. This technology assures the improvement of the chemical stability, hydrophilicity, and environmental persistence of EOs, giving an added value for the fabrication of natural insecticides effective against a wide spectrum of insect vectors and pests of public and agronomical importance. Carlina acaulis (Asteraceae) root EO has been recently proposed as a promising ingredient of a new generation of botanical insecticides. In the present study, a highly stable C. acaulis-based NE was developed. Interestingly, such a nanosystem was able to encapsulate 6% (w/w) of C. acaulis EO, showing a mean diameter of around 140 nm and a SOR (surfactant-to-oil ratio) of 0.6. Its stability was evaluated in a storage period of six months and corroborated by an accelerated stability study. Therefore, the C. acaulis EO and C. acaulis-based NE were evaluated for their toxicity against 1st instar larvae of the European grapevine moth (EGVM), Lobesia botrana (Denis & Schiffermüller, 1775) (Lepidoptera: Tortricidae), a major vineyard pest. The chemical composition of C. acaulis EO was investigated by gas chromatography-mass spectrometry (GC-MS) revealing carlina oxide, a polyacetylene, as the main constituent. In toxicity assays, both the C. acaulis EO and the C. acaulis-based NE were highly toxic to L. botrana larvae, with LC50 values of 7.299 and 9.044 µL/mL for C. acaulis EO and NE, respectively. The C. acaulis-based NE represents a promising option to develop highly stable botanical insecticides for pest management. To date, this study represents the first evidence about the insecticidal toxicity of EOs and EO-based NEs against this major grapevine pest.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA