Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 207(11): 2799-2812, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34740957

RESUMO

Absent in melanoma-2 (AIM2) is an inflammasome-forming innate immune sensor for dsDNA but also exhibits inflammasome-independent functions such as restricting cellular proliferation. AIM2 is expressed in the kidney, but its localization and function are not fully characterized. In normal human glomeruli, AIM2 localized to podocytes. In patients with glomerulonephritis, AIM2 expression increased in CD44+-activated parietal epithelial cells within glomerular crescents. To explore AIM2 effects in glomerular disease, studies in Aim2 -/- mice were performed. Aim2-/- glomeruli showed reduced expression of Wilm tumor gene-1 (WT1), WT1-driven podocyte genes, and increased proliferation in outgrowth assays. In a nephrotoxic serum (NTS)-induced glomerulonephritis model, Aim2-/- (B6) mice exhibited more severe glomerular crescent formation, tubular injury, inflammation, and proteinuria compared with wild-type controls. Inflammasome activation markers were absent in both Aim2 -/- and wild-type kidneys, despite an increased inflammatory transcriptomic signature in Aim2 -/- mice. Aim2 -/- mice also demonstrated dysregulated cellular proliferation and an increase in CD44+ parietal epithelial cells during glomerulonephritis. The augmented inflammation and epithelial cell proliferation in Aim2 -/- (B6) mice was not due to genetic background, as Aim2 -/- (B6.129) mice demonstrated a similar phenotype during NTS glomerulonephritis. The AIM2-like receptor (ALR) locus was necessary for the inflammatory glomerulonephritis phenotype observed in Aim2 -/- mice, as NTS-treated ALR -/- mice displayed equal levels of injury as wild-type controls. Podocyte outgrowth from ALR -/- glomeruli was still increased, however, confirming that the ALR locus is dispensable for AIM2 effects on epithelial cell proliferation. These results identify a noncanonical role for AIM2 in suppressing inflammation and epithelial cell proliferation during glomerulonephritis.


Assuntos
Proteínas de Ligação a DNA/imunologia , Células Epiteliais/imunologia , Glomerulonefrite/imunologia , Inflamação/imunologia , Animais , Proliferação de Células , Proteínas de Ligação a DNA/deficiência , Feminino , Glomerulonefrite/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
2.
Nat Commun ; 11(1): 483, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980623

RESUMO

Inflammatory bowel disease is associated with changes in the mucosal barrier, increased intestinal permeability, and increased risk of infections and sepsis, but the underlying mechanisms are incompletely understood. Here, we show how continuous translocation of gut microbial components affects iron homeostasis and facilitates susceptibility to inflammation-associated sepsis. A sub-lethal dose of lipopolysaccharide results in higher mortality in Mucin 2 deficient (Muc2-/-) mice, and is associated with elevated circulatory iron load and increased bacterial translocation. Translocation of gut microbial components attenuates hepatic stearoyl CoA desaturase-1 activity, a key enzyme in hepatic de novo lipogenesis. The resulting reduction of hepatic saturated and unsaturated fatty acid levels compromises plasma membrane fluidity of red blood cells, thereby significantly reducing their life span. Inflammation in Muc2-/- mice alters erythrophagocytosis efficiency of splenic macrophages, resulting in an iron-rich milieu that promotes bacterial growth. Our study thus shows that increased intestinal permeability triggers a cascade of events resulting in increased bacterial growth and risk of sepsis.


Assuntos
Mucosa Intestinal/metabolismo , Ferro/metabolismo , Fígado/metabolismo , Sepse/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Animais , Permeabilidade da Membrana Celular , Citofagocitose , Modelos Animais de Doenças , Feminino , Microbioma Gastrointestinal , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/microbiologia , Mucosa Intestinal/microbiologia , Ferro/sangue , Lipogênese , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Mucina-2/deficiência , Mucina-2/genética , Sepse/etiologia , Sepse/microbiologia
3.
Cell ; 178(5): 1205-1221.e17, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31442408

RESUMO

A hallmark feature of inflammation is the orchestrated recruitment of neutrophils from the bloodstream into inflamed tissue. Although selectins and integrins mediate recruitment in many tissues, they have a minimal role in the lungs and liver. Exploiting an unbiased in vivo functional screen, we identified a lung and liver homing peptide that functionally abrogates neutrophil recruitment to these organs. Using biochemical, genetic, and confocal intravital imaging approaches, we identified dipeptidase-1 (DPEP1) as the target and established its role as a physical adhesion receptor for neutrophil sequestration independent of its enzymatic activity. Importantly, genetic ablation or functional peptide blocking of DPEP1 significantly reduced neutrophil recruitment to the lungs and liver and provided improved survival in models of endotoxemia. Our data establish DPEP1 as a major adhesion receptor on the lung and liver endothelium and identify a therapeutic target for neutrophil-driven inflammatory diseases of the lungs.


Assuntos
Dipeptidases/metabolismo , Neutrófilos/fisiologia , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Animais , Cilastatina/farmacologia , Cilastatina/uso terapêutico , Dipeptidases/antagonistas & inibidores , Dipeptidases/genética , Modelos Animais de Doenças , Endotoxemia/mortalidade , Endotoxemia/patologia , Endotoxemia/prevenção & controle , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Humanos , Lipopolissacarídeos/farmacologia , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos SCID , Infiltração de Neutrófilos/efeitos dos fármacos , Peptídeos/síntese química , Peptídeos/química , Peptídeos/farmacologia , Taxa de Sobrevida
4.
Dev Cell ; 49(2): 206-219.e7, 2019 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-30930167

RESUMO

Cell polarization is important for various biological processes. However, its regulation, particularly initiation, is incompletely understood. Here, we investigated mechanisms by which neutrophils break their symmetry and initiate their cytoskeleton polarization from an apolar state in circulation for their extravasation during inflammation. We show here that a local increase in plasma membrane (PM) curvature resulting from cell contact to a surface triggers the initial breakage of the symmetry of an apolar neutrophil and is required for subsequent polarization events induced by chemical stimulation. This local increase in PM curvature recruits SRGAP2 via its F-BAR domain, which in turn activates PI4KA and results in PM PtdIns4P polarization. Polarized PM PtdIns4P is targeted by RPH3A, which directs PIP5K1C90 and subsequent phosphorylated myosin light chain polarization, and this polarization signaling axis regulates neutrophil firm attachment to endothelium. Thus, this study reveals a mechanism for the initiation of cell cytoskeleton polarization.


Assuntos
Polaridade Celular/fisiologia , Neutrófilos/fisiologia , Actinas/metabolismo , Animais , Adesão Celular , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Movimento Celular/fisiologia , Junções Célula-Matriz , Citoesqueleto/metabolismo , Endotélio/metabolismo , Feminino , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/fisiologia , Células HEK293 , Humanos , Leucócitos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antígenos de Histocompatibilidade Menor/metabolismo , Cadeias Leves de Miosina/metabolismo , Neutrófilos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Transdução de Sinais
5.
FASEB J ; 33(4): 5676-5689, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30668930

RESUMO

Macrophages play central roles in immunity as early effectors and modulating adaptive immune reponses; we implicated macrophages in the anticolitic effect of infection with the tapeworm Hymenolepis diminuta. Here, gene arrays revealed that H. diminuta antigen (HdAg) evoked a program in murine macrophages distinct from that elicited by IL-4. Further, HdAg suppressed LPS-evoked release of TNF-α and IL-1ß from macrophages via autocrine IL-10 signaling. In assessing the ability of macrophages treated in vitro with an extract of H. diminuta [M(HdAg)] to affect disease, intravenous, but not peritoneal, injection of M(HdAg) protected wild-type but not RAG1-/- mice from dinitrobenzene sulphonic acid (DNBS)-induced colitis. Administration of splenic CD4+ T cells from in vitro cocultures with M(HdAg), but not those cocultured with M(IL-4) cells, inhibited DNBS-induced colitis; fractionation of the T-cell population indicated that the CD4+CD25+ T cells from cocultures with M(HdAg) drove the suppression of DNBS-induced colitis. Use of IL-4-/- or IL-10-/- CD4+ T cells revealed that neither cytokine alone from the donor cells was essential for the anticolitic effect. These data illustrate that HdAg evokes a unique regulatory program in macrophages, identifies HdAg-evoked IL-10 suppression of macrophage activation, and reveals the ability of HdAg-treated macrophages to educate ( i.e., condition) and mobilize CD4+CD25+ T cells, which could be deployed to treat colonic inflammation.-Reyes, J. L., Lopes, F., Leung, G., Jayme, T. S., Matisz, C. E., Shute, A., Burkhard, R., Carneiro, M., Workentine, M. L., Wang, A., Petri, B., Beck, P. L., Geuking, M. B., McKay, D. M., Macrophages treated with antigen from the tapeworm Hymenolepis diminuta condition CD25+ T cells to suppress colitis.


Assuntos
Antígenos de Helmintos/imunologia , Linfócitos T CD4-Positivos/imunologia , Cestoides/imunologia , Colite/imunologia , Hymenolepis diminuta/imunologia , Subunidade alfa de Receptor de Interleucina-2/imunologia , Macrófagos/imunologia , Animais , Colite/parasitologia , Colo/imunologia , Colo/parasitologia , Citocinas/imunologia , Humanos , Interleucina-10/imunologia , Interleucina-4/imunologia , Ativação de Macrófagos/imunologia , Macrófagos/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C
6.
J Innate Immun ; 11(2): 136-149, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30205385

RESUMO

It has emerged that neutrophils can play important roles in the host response following infection with helminth parasites. Mice infected with the tapeworm, Hymenolepis diminuta, are protected from some inflammatory conditions, accompanied by reduced neutrophil tissue infiltration. Thus, the ability of a phosphate-buffered saline-soluble extract of the worm (H. diminuta extract [HdE]) was tested for (1) its ability to activate murine neutrophils (Ca2+ mobilization, reactive oxygen species (ROS) and cytokine production); and (2) affect neutrophil chemotaxis in vitro to the penta-peptide, WKYMVm, the chemokine, KC, and leukotriene B4. HdE was not cytotoxic to neutrophils, elicited a Ca2+ response and ROS, but not, cytokine (KC, interleukin-10, tumour necrosis factor-α) generation. HdE is not a chemotactic stimulus for murine neutrophils. However, a heat- and trypsin-sensitive, acid-insensitive proteoglycan (sensitive to sodium metaperiodate) in the HdE significantly reduced neutrophil chemotaxis towards WKYMVm or KC, but not LTB4. The latter suggested that the HdE interfered with p38 mitogen-activated protein kinase signalling, which is important in WKYMVm chemotaxis. Corroborating this, immunoblotting revealed reduced phosphorylated p38, and the downstream signal heat-shock protein-27, in protein extracts from HdE + WkYMVm treated cells compared to those exposed to the penta-peptide only. We speculate that HdE can be used to modify the outcome of neutrophilic disease and that purification of the bioactive proteoglycan(s) from the extract could be used as a template to design immunomodulatory drugs targeting neutrophils.


Assuntos
Antígenos de Helmintos/metabolismo , Himenolepíase/imunologia , Hymenolepis diminuta/fisiologia , Neutrófilos/imunologia , Proteoglicanas/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Antígenos de Helmintos/imunologia , Sinalização do Cálcio , Extratos Celulares/farmacologia , Células Cultivadas , Quimiotaxia , Citocinas/metabolismo , Regulação para Baixo , Ativação Enzimática , Interações Hospedeiro-Parasita , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ativação de Neutrófilo , Proteoglicanas/imunologia , Tripsina/metabolismo
7.
Front Immunol ; 10: 2988, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31969883

RESUMO

Non-alcoholic fatty liver disease is a spectrum of liver pathology ranging from simple steatosis to steatohepatitis and can progress to diseases associated with poor outcomes including cirrhosis and hepatocellular carcinoma (HCC). NAFLD research has typically focused on the pathophysiology associated with lipid metabolism, using traditional measures such as histology and serum transaminase assessment; these methods have provided key information regarding NAFLD progression. Although valuable, these techniques are limited in providing further insight into the mechanistic details of inflammation associated with NAFLD. Intravital microscopy (IVM) is an advanced tool that allows for real-time visualization of cellular behavior and interaction in a living animal. Extensive IVM imaging has been conducted in liver, but, in the context of NAFLD, this technique has been regularly avoided due to significant tissue autofluorescence, a phenomenon that is exacerbated with steatosis. Here, we demonstrate that, using multiple imaging platforms and optimization techniques to minimize autofluorescence, IVM in fatty liver is possible. Successful fatty liver intravital imaging provides details on cell trafficking, recruitment, function, and behavior in addition to information about blood flow and vessel dynamics, information which was previously difficult to obtain. As more than 30% of the global population is overweight/obese, there is a significant proportion of the population at risk for NAFLD and complications due to NAFLD (liver decompensation, cirrhosis, HCC). IVM has the potential to elucidate the poorly understood mechanisms surrounding liver inflammation and NAFLD progression and possesses the potential to identify key processes that may be targeted for future therapeutic interventions in NAFLD patients.


Assuntos
Microscopia Intravital , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Hepatopatia Gordurosa não Alcoólica/patologia , Animais , Rastreamento de Células , Modelos Animais de Doenças , Progressão da Doença , Imunofluorescência , Imuno-Histoquímica , Microscopia Intravital/métodos , Camundongos , Fenótipo
8.
Nat Immunol ; 19(10): 1100-1111, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30250184

RESUMO

Females have an overall advantage over males in resisting Gram-negative bacteremias, thus hinting at sexual dimorphism of immunity during infections. Here, through intravital microscopy, we observed a sex-biased difference in the capture of blood-borne bacteria by liver macrophages, a process that is critical for the clearance of systemic infections. Complement opsonization was indispensable for the capture of enteropathogenic Escherichia coli (EPEC) in male mice; however, a faster complement component 3-independent process involving abundant preexisting antibodies to EPEC was detected in female mice. These antibodies were elicited predominantly in female mice at puberty in response to estrogen regardless of microbiota-colonization conditions. Estrogen-driven antibodies were maternally transferrable to offspring and conferred protection during infancy. These antibodies were conserved in humans and recognized specialized oligosaccharides integrated into the bacterial lipopolysaccharide and capsule. Thus, an estrogen-driven, innate antibody-mediated immunological strategy conferred protection to females and their offspring.


Assuntos
Anticorpos Antibacterianos/imunologia , Infecções por Escherichia coli/imunologia , Imunidade Inata/imunologia , Caracteres Sexuais , Animais , Escherichia coli Enteropatogênica , Estrogênios/imunologia , Feminino , Humanos , Lactente , Células de Kupffer/imunologia , Masculino , Troca Materno-Fetal/imunologia , Camundongos , Gravidez
9.
Am J Pathol ; 188(11): 2589-2604, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30121255

RESUMO

A recently identified feature of the host response to infection with helminth parasites is suppression of concomitant disease. Dendritic cells (DCs) exposed to antigens from the tapeworm Hymenolepis diminuta significantly reduce the severity of dinitrobenzene sulfonic acid-induced colitis in mice. Here we elucidate mechanisms underlying this cellular immunotherapy. We show a requirement for Ccr7 expression on transferred H. diminuta antigen-treated (HD)-DCs, suggesting that homing to secondary lymphoid tissues is important for suppression of colitis. Furthermore, sodium metaperiodate-sensitive helminth-derived glycans are required to drive the anti-colitic response in recipient mice. Induction of Th2-type cytokines and Gata-3+Cd4+ cells in secondary lymphoid tissues is dependent on major histocompatibility complex class II (MHC II) protein expression on transferred DCs, although remarkably, transfer of MHC II-/- HD-DCs still attenuated dinitrobenzene sulfonic acid-induced colitis in recipient mice. Moreover, transfer of Cd4+ splenic T cells retrieved from mice administered MHC II-/- HD-DCs suppressed dinitrobenzene sulfonic acid-induced colitis in recipient mice. Our studies reveal that HD-DCs can suppress colitis via an alternative MHC II-independent pathway that involves, in part, mobilization of T-cell responses. These data support the utility of HD-DCs in blocking colitis, revealing a requirement for Ccr7 and providing for HD-DC autologous immunotherapy for disease in which MHC II expression and/or function is compromised.


Assuntos
Anti-Inflamatórios/farmacologia , Apresentação de Antígeno/imunologia , Antígenos de Helmintos/imunologia , Linfócitos T CD4-Positivos/imunologia , Colite/prevenção & controle , Células Dendríticas/imunologia , Antígenos de Histocompatibilidade Classe II/fisiologia , Transferência Adotiva , Animais , Colite/induzido quimicamente , Colite/imunologia , Citocinas , Hymenolepis diminuta/imunologia , Imunoterapia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout
10.
J Leukoc Biol ; 104(1): 147-158, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29633338

RESUMO

Leukocyte recruitment plays a critical role during both normal inflammation and chronic inflammatory diseases, and ongoing studies endeavor to better understand the complexities of this process. Focal adhesion kinase (FAK) is well known for its role in cancer, yet it also has been shown to regulate aspects of neutrophil and B16 melanoma cell recruitment by rapidly influencing endothelial cell focal adhesion dynamics and junctional opening. Recently, we found that FAK related non-kinase (FRNK), a protein that is often used as a FAK dominant negative, blocked eosinophil transmigration by preventing the transcription of vascular cell adhesion molecule-1 (VCAM-1) and eotaxin-3 (CCL26). Surprisingly, the blocking occurred even in the absence of endogenous FAK. To better understand the role of FAK in leukocyte recruitment, we used a FAK-specific inhibitor (PF-573228) and determined the effect on IL-4 induced eosinophil recruitment in vitro and in vivo. PF-573228 prevented the expression of VCAM-1 and CCL26 expression in IL-4-stimulated human endothelial cells in vitro. As a result, eosinophil adhesion and transmigration were blocked. PF-572338 also prevented IL-4-induced VCAM-1 expression in vivo. Using brightfield intravital microscopy, we found that PF-573228 decreased leukocyte rolling flux, adhesion, and emigration. We specifically examined eosinophil recruitment in vivo by using an eosinophil-GFP reporter mouse and found PF-573228 attenuated eosinophil emigration. This study reveals that a FAK inhibitor influences inflammation through its action on eosinophil recruitment.


Assuntos
Quimiotaxia de Leucócito/fisiologia , Eosinófilos/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Molécula 1 de Adesão de Célula Vascular/biossíntese , Animais , Células Cultivadas , Quimiotaxia de Leucócito/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Quinolonas/farmacologia , Sulfonas/farmacologia
11.
Inflamm Bowel Dis ; 19(3): 489-500, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23282580

RESUMO

BACKGROUND: Pharmacologic inhibition or genetic ablation of phosphoinositide 3-kinase gamma (PI3Kγ) has been shown to be protective against experimental colitis. However, the role of PI3Kγ in the resolution phase of colitis remains unexplored. In this study, we assess the effects of genetic knockout of PI3Kγ on the induction and resolution of colitis induced by the hapten trinitrobenzene sulfonic acid (TNBS). METHODS: Colitis was induced in wild-type C57/Bl6 or PI3Kγ-/- mice by intrarectal administration of 2.5 mg of TNBS in 50% ethanol. Body weights were monitored daily, and colon tissues were collected at days 3, 7, or 14 after treatment, and colitis was assessed using disease activity and histologic damage scores, measurement of tissue myeloperoxidase and neutrophil infiltration, and local cytokine production. RESULTS: Mice lacking PI3Kγ were significantly protected from disease during the acute phase (day 3) of TNBS colitis. However, PI3Kγ-/- mice have difficulty resolving acute inflammation because they failed to restore lost weight and had significantly elevated histologic damage scores and tissue myeloperoxidase levels at days 7 and 14 after TNBS administration compared with wild-type controls. This phenomenon was dependent on presensitization with TNBS and seems to involve an inability to clear invading bacteria, resulting in the generation of a persistent inflammatory cytokine response. CONCLUSIONS: This study confirms that PI3Kγ plays a role in the induction of colitis. However, PI3Kγ is also required for the resolution of intestinal damage following acute inflammation. This must be taken into consideration before the inhibition of PI3Kγ can be used as a treatment for disorders such as inflammatory bowel disease.


Assuntos
Classe Ib de Fosfatidilinositol 3-Quinase/deficiência , Colite/enzimologia , Doença Aguda , Animais , Translocação Bacteriana , Biomarcadores/metabolismo , Doença Crônica , Colite/induzido quimicamente , Colite/imunologia , Colite/patologia , Citocinas/metabolismo , Imunofluorescência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos , Peroxidase/metabolismo , Fagocitose , Reação em Cadeia da Polimerase em Tempo Real , Índice de Gravidade de Doença , Ácido Trinitrobenzenossulfônico , Redução de Peso
12.
Blood ; 117(3): 942-52, 2011 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-21030556

RESUMO

The endothelium actively participates in neutrophil migration out of the vasculature via dynamic, cytoskeleton-dependent rearrangements leading to the formation of transmigratory cups in vitro, and to domes that completely surround the leukocyte in vivo. Leukocyte-specific protein 1 (LSP1), an F-actin-binding protein recently shown to be in the endothelium, is critical for effective transmigration, although the mechanism has remained elusive. Herein we show that endothelial LSP1 is expressed in the nucleus and cytosol of resting endothelial cells and associates with the cytoskeleton upon endothelial activation. Two-photon microscopy revealed that endothelial LSP1 was crucial for the formation of endothelial domes in vivo in response to neutrophil chemokine keratinocyte-derived chemokine (KC) as well as in response to endogenously produced chemokines stimulated by cytokines (tumor necrosis factor α [TNFα] or interleukin-1ß [IL-1ß]). Endothelial domes were significantly reduced in Lsp1(-/-) compared with wild-type (WT) mice. Lsp1(-/-) animals not only showed impaired neutrophil emigration after KC and TNFα stimulation, but also had disproportionate increases in vascular permeability. We demonstrate that endothelial LSP1 is recruited to the cytoskeleton in inflammation and plays an important role in forming endothelial domes thereby regulating neutrophil transendothelial migration. The permeability data may underscore the physiologic relevance of domes and the role for LSP1 in endothelial barrier integrity.


Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Permeabilidade Capilar/fisiologia , Endotélio/metabolismo , Neutrófilos/fisiologia , Migração Transendotelial e Transepitelial , Animais , Western Blotting , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Células Cultivadas , Citoesqueleto/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio/citologia , Endotélio/efeitos dos fármacos , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos , Microscopia Confocal/instrumentação , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência por Excitação Multifotônica/instrumentação , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/efeitos dos fármacos , Neutrófilos/citologia , Neutrófilos/ultraestrutura , Fator de Necrose Tumoral alfa/farmacologia
13.
J Immunol ; 184(3): 1292-9, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20038636

RESUMO

CD34 is a cell surface sialomucin expressed by hematopoietic precursors, eosinophils, mast cells, and vascular endothelia and is suggested to play an integral role in mucosal inflammatory responses. Although Cd34(-/-) mice have normal hematopoietic cell subsets in peripheral tissues at steady state, they exhibit a cell recruitment defect when challenged, offering a unique opportunity to distinguish between local inflammatory cell proliferation and peripheral recruitment in disease. Autoimmune arthritis is an inflammatory disease dependent on hematopoietic infiltration, and in this study, we have examined the role of CD34 in disease development and progression. Using an autoimmune serum transfer model, arthritis was induced in C57BL/6 wild-type and Cd34(-/-) mice. Surprisingly, we found that Cd34(-/-) mice were more susceptible to arthritis than wild-type mice. We examined mast cell-transplanted, eosinophil-deficient, and bone marrow-chimeric mice to determine the role of CD34 expression on disease progression. These experiments excluded CD34-deficient mast cells, eosinophils, or hematopoietic cells as the cause of the exacerbated disease. Further study demonstrated that Cd34(-/-) mice exhibit increased vascular leakage at onset of disease and in response to TNF, which correlated with a subsequent increase in disease severity. We conclude that loss of CD34 expression leads to increased vascular permeability in the joints at onset of disease, leading to exacerbated arthritic disease in Cd34(-/-) mice.


Assuntos
Antígenos CD34/genética , Artrite Experimental/genética , Artrite Experimental/imunologia , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Permeabilidade Capilar/genética , Permeabilidade Capilar/imunologia , Animais , Antígenos CD34/fisiologia , Artrite Experimental/patologia , Artrite Experimental/fisiopatologia , Doenças Autoimunes/patologia , Doenças Autoimunes/fisiopatologia , Transplante de Medula Óssea/imunologia , Transplante de Medula Óssea/patologia , Células Cultivadas , Progressão da Doença , Imunofenotipagem , Masculino , Mastócitos/imunologia , Mastócitos/metabolismo , Mastócitos/patologia , Camundongos , Camundongos Knockout , Camundongos Mutantes , Camundongos Transgênicos , Índice de Gravidade de Doença
14.
Gastroenterology ; 138(3): 1079-90.e1-5, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19900444

RESUMO

BACKGROUND & AIMS: Leukocyte adhesion deficiency II (LAD II) is a rare condition caused by defective protein fucosylation, causing decreased leukocyte rolling, psychomotor retardation, and poor growth. The ligand-binding activity of Notch, a gastrointestinal signaling protein, depends on O-fucosylation. We investigated Notch signaling and intestinal epithelial architecture in a mouse model of LAD II. METHODS: Mice lacking 3,5-epimerase/4-reductase (FX) or FX(-/-) bone marrow chimeras (with either wild-type or FX(-/-) bone marrow) were maintained on a fucose-free diet. Intestinal secretory epithelial cells were quantified by histology and immunohistochemistry. Reverse transcription-polymerase chain reaction and immunoblot analyses were used to detect Notch-regulated genes in isolated crypt epithelium. Intestinal leukocyte-endothelial interaction was quantified by intravital microscopy. The intestinal epithelium of 2-week-old FX(-/-) mice was transfected with an adenoviral vector expressing a constitutively active form of Notch. RESULTS: FX(-/-) mice rapidly exhibited secretory epithelial cell hyperplasia, reduced cell proliferation, and altered epithelial gene expression patterns consistent with reduced Notch signaling. These effects were reversed when mice were given dietary fucose or by adenoviral transfection of the intestinal epithelium with the Notch intracellular domain. CONCLUSIONS: In a mouse model of LAD II, secretory cell hyperplasia occurs in the small intestine and colon; these effects depend on Notch signaling. Defects in Notch signaling might therefore be involved in the pathogenesis of this rare pediatric condition.


Assuntos
Carboidratos Epimerases/metabolismo , Proliferação de Células , Colo/metabolismo , Células Caliciformes/metabolismo , Hidroliases/metabolismo , Íleo/metabolismo , Migração e Rolagem de Leucócitos , Síndrome da Aderência Leucocítica Deficitária/metabolismo , Celulas de Paneth/metabolismo , Receptores Notch/metabolismo , Adenoviridae/genética , Animais , Carboidratos Epimerases/deficiência , Carboidratos Epimerases/genética , Linhagem da Célula , Colo/patologia , Carboidratos da Dieta/administração & dosagem , Modelos Animais de Doenças , Fucose/administração & dosagem , Fucose/deficiência , Regulação da Expressão Gênica , Vetores Genéticos , Genótipo , Células Caliciformes/patologia , Hidroliases/deficiência , Hidroliases/genética , Hiperplasia , Íleo/patologia , Immunoblotting , Imuno-Histoquímica , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Síndrome da Aderência Leucocítica Deficitária/genética , Síndrome da Aderência Leucocítica Deficitária/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Vídeo , Celulas de Paneth/patologia , Fenótipo , Receptores Notch/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Fatores de Tempo , Transfecção , Aumento de Peso
15.
J Immunol ; 182(11): 6870-8, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19454683

RESUMO

Mac-1-dependent crawling is a new step in the leukocyte recruitment cascade that follows LFA-1-dependent adhesion and precedes emigration. Neutrophil adhesion via LFA-1 has been shown to induce cytoskeletal reorganization through Vav1-dependent signaling, and the current study investigates the role of Vav1 in the leukocyte recruitment process in vivo with particular attention to the events immediately downstream of LFA-1-dependent adhesion. Intravital and spinning-disk-confocal microscopy was used to investigate intravascular crawling in relation to endothelial junctions in vivo in wild-type and Vav1(-/-) mice. Adherent wild-type neutrophils almost immediately began crawling perpendicular to blood flow via Mac-1 until they reached an endothelial junction where they often changed direction. This pattern of perpendicular, mechanotactic crawling was recapitulated in vitro when shear was applied. In sharp contrast, the movement of Vav1(-/-) neutrophils was always in the direction of flow and appeared more passive as if the cells were dragged in the direction of flow in vivo and in vitro. More than 80% of Vav1(-/-) neutrophils moved independent of Mac-1 and could be detached with LFA-1 Abs. An inability to release the uropod was frequently noted for Vav1(-/-) neutrophils, leading to greatly elongated tails. The Vav1(-/-) neutrophils failed to stop or follow junctions and ultimately detached, leading to fewer emigrated neutrophils. The Vav1(-/-) phenotype resulted in fewer neutrophils recruited in a relevant model of infectious peritonitis. Clearly, Vav1 is critical for the complex interplay between LFA-1 and Mac-1 that underlies the programmed intravascular crawling of neutrophils.


Assuntos
Quimiotaxia de Leucócito/imunologia , Inflamação/imunologia , Antígeno-1 Associado à Função Linfocitária/fisiologia , Antígeno de Macrófago 1/fisiologia , Microvasos/patologia , Neutrófilos/fisiologia , Proteínas Proto-Oncogênicas c-vav/fisiologia , Animais , Endotélio Vascular/citologia , Hemorreologia , Junções Intercelulares , Masculino , Camundongos , Camundongos Knockout , Microscopia , Proteínas Proto-Oncogênicas c-vav/deficiência , Gravação em Vídeo
16.
J Exp Med ; 203(7): 1671-7, 2006 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-16818677

RESUMO

Endothelial cell-selective adhesion molecule (ESAM) is specifically expressed at endothelial tight junctions and on platelets. To test whether ESAM is involved in leukocyte extravasation, we have generated mice carrying a disrupted ESAM gene and analyzed them in three different inflammation models. We found that recruitment of lymphocytes into inflamed skin was unaffected by the gene disruption. However, the migration of neutrophils into chemically inflamed peritoneum was inhibited by 70% at 2 h after stimulation, recovering at later time points. Analyzing neutrophil extravasation directly by intravital microscopy in the cremaster muscle revealed that leukocyte extravasation was reduced (50%) in ESAM(-/-) mice without affecting leukocyte rolling and adhesion. Depletion of >98% of circulating platelets did not abolish the ESAM deficiency-related inhibitory effect on neutrophil extravasation, indicating that it is only ESAM at endothelial tight junctions that is relevant for the extravasation process. Knocking down ESAM expression in endothelial cells resulted in reduced levels of activated Rho, a GTPase implicated in the destabilization of tight junctions. Indeed, vascular permeability stimulated by vascular endothelial growth factor was reduced in ESAM(-/-) mice. Collectively, ESAM at endothelial tight junctions participates in the migration of neutrophils through the vessel wall, possibly by influencing endothelial cell contacts.


Assuntos
Permeabilidade Capilar/imunologia , Moléculas de Adesão Celular/fisiologia , Movimento Celular/imunologia , Neutrófilos/patologia , Fator A de Crescimento do Endotélio Vascular/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Permeabilidade Capilar/genética , Moléculas de Adesão Celular/deficiência , Moléculas de Adesão Celular/genética , Comunicação Celular/genética , Comunicação Celular/imunologia , Movimento Celular/genética , Ativação Enzimática/genética , Ativação Enzimática/imunologia , Feminino , Masculino , Camundongos , Camundongos Knockout , Neutrófilos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA