Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
J Biomed Mater Res A ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39295435

RESUMO

Regenerated fibrous cellulose possesses a unique set of properties, including biocompatibility, biodegradability, and high surface area potential, but its applications in the biomedical sector have not been sufficiently explored. In this study, nanofibrous cellulose matrices were fabricated via a wet-electrospinning process using a binary system of the solvent ionic liquid (IL) 1-butyl-3-methylimidazolium acetate (BMIMAc) and co-solvent dimethyl sulfoxide (DMSO). The morphology of the matrices was controlled by varying the ratio of BMIMAc versus DMSO in the solvent system. The most effective ratio of 1:1 produced smooth fibers with diameters ranging from 200 to 400 nm. The nanofibrous cellulose matrix showed no cytotoxicity when tested on mouse fibroblast L929 cells whose viability remained above 95%. Human triple-negative breast cancer MDA-MB-231 cells also exhibited high viability even after 7 days of seeding and were able to penetrate deeper layers of the matrix, indicating high biocompatibility. These properties of nanofibrous cellulose demonstrate its potential for tissue engineering and cell culture applications.

2.
Am J Cancer Res ; 14(7): 3584-3599, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113879

RESUMO

Triple-negative breast cancer (TNBC) treatment is challenging due to its aggressive nature and heterogeneity of this type of cancer, characterized by various subtypes and intratumoral diversity. Doxorubicin (DOX) plays a crucial role in TNBC chemotherapy reducing the tumor size and improving patient survival. However, decreased drug uptake and increased resistance in specific cell subpopulations reduce the effectiveness of the treatment. This study explored the differences in DOX transport in MDA-MB-231 phenotypic sublines in cell monolayer (2D model) and cell spheroids (3D cultures). Cell spheroids were formed using magnetic 3D Bioprinting method. DOX transport into cells and spheroids was evaluated using fluorescence microscopy after different incubation durations with DOX in normoxia and hypoxia. In hypoxia, DOX transport into cells was 2.5 to 5-fold lower than in normoxia. The subline F5 monolayer-cultured cells exhibited the highest DOX uptake, while subline H2 cells showed the lowest uptake in normoxia and hypoxia. In 3D cultures, DOX transport was up to 2-fold lower in spheroids formed from subline H2 cells. Spheroids from subline D8 and MDA-MB-231 parent cells had the highest DOX uptake. A correlation was observed between the characteristics of the cells and their resistance to anticancer drugs. The results indicate that different cancer cell subpopulations in tumours due to differences in drug uptake could significantly impact treatment efficacy.

3.
Mol Cancer Res ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39133919

RESUMO

Cytokinetic abscission is a crucial process that guides the separation of daughter cells at the end of each cell division. This process involves the cleavage of the intercellular bridge, which connects the newly formed daughter cells. Over the years, researchers have identified several cellular contributors and intracellular processes that influence the spatial and temporal distribution of the cytoskeleton during cytokinetic abscission. This review presents the most important scientific discoveries that allow activation of the abscission checkpoint, ensuring a smooth and successful separation of a single cell into two cells during cell division. Here, we describe different factors, such as abscission checkpoint, ICB tension, nuclear pore defects, DNA replication stress, chromosomal stability and midbody proteins, which play a role in the regulation and correct timing of cytokinetic abscission. Furthermore, we explore the downsides associated with the dysregulation of abscission, including its negative impact on cells and the potential to induce tumor formation in humans. Finally, we propose a novel factor for improving cancer therapy and give future perspectives in this research field.

4.
Pharmaceutics ; 16(6)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38931857

RESUMO

The phytochemical diversity and potential health benefits of V. oxycoccos and V. macrocarpon fruits call for further scientific inquiry. Our study aimed to determine the phytochemical composition of extracts from these fruits and assess their antioxidant, antibacterial, and anticancer properties in vitro. It was found that the ethanolic extracts of V. oxycoccos and V. macrocarpon fruits, which contained more lipophilic compounds, had 2-14 times lower antioxidant activity compared to the dry aqueous extracts of cranberry fruit, which contained more hydrophilic compounds. All tested cranberry fruit extracts (OE, OW, ME, and MW) significantly inhibited the growth of bacterial strains S. aureus, S. epidermidis, E. coli, and K. pneumoniae in vitro compared to the control. Cytotoxic activity against the human prostate carcinoma PPC-1 cell line, human renal carcinoma cell line (CaKi-1), and human foreskin fibroblasts (HF) was determined using an MTT assay. Furthermore, the effect of the cranberry fruit extract samples on cell migration activity, cancer spheroid growth, and viability was examined. The ethanolic extract from V. macrocarpon fruits (ME) showed higher selectivity in inhibiting the viability of prostate and renal cancer cell lines compared to fibroblasts. It also effectively hindered the migration of these cancer cell lines. Additionally, the V. macrocarpon fruit extract (ME) demonstrated potent cytotoxicity against PPC-1 and CaKi-1 spheroids, significantly reducing the size of PPC-1 spheroids compared to the control. These findings suggest that cranberry fruit extracts, particularly the ethanolic extract from V. macrocarpon fruits, have promising potential as natural remedies for bacterial infections and cancer therapy.

5.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339112

RESUMO

A series of hydrazones, azoles, and azines bearing a 4-dimethylaminophenyl-5-oxopyrrolidine scaffold was synthesized. Their cytotoxic effect against human pancreatic carcinoma Panc-1 and triple-negative breast cancer MDA-MB-231 cell lines was established by MTT assay. Pyrrolidinone derivatives 3c and 3d, with incorporated 5-chloro and 5-methylbenzimidazole fragments; hydrazone 5k bearing a 5-nitrothien-2-yl substitution; and hydrazone 5l with a naphth-1-yl fragment in the structure significantly decreased the viability of both cancer cell lines. Compounds 3c and 5k showed the highest selectivity, especially against the MDA-MB-231 cancer cell line. The EC50 values of the most active compound 5k against the MDA-MB231 cell line was 7.3 ± 0.4 µM, which were slightly higher against the Panc-1 cell line (10.2 ± 2.6 µM). Four selected pyrrolidone derivatives showed relatively high activity in a clonogenic assay. Compound 5k was the most active in both cell cultures, and it completely disturbed MDA-MB-231 cell colony growth at 1 and 2 µM and showed a strong effect on Panc-1 cell colony formation, especially at 2 µM. The compounds did not show an inhibitory effect on cell line migration by the 'wound-healing' assay. Compound 3d most efficiently inhibited the growth of Panc-1 spheroids and reduced cell viability in MDA-MB-231 spheroids. Considering these different activities in biological assays, the selected pyrrolidinone derivatives could be further tested to better understand the structure-activity relationship and their mechanism of action.


Assuntos
Antineoplásicos , Neoplasias Pancreáticas , Neoplasias de Mama Triplo Negativas , Humanos , Antineoplásicos/uso terapêutico , Relação Estrutura-Atividade , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Proliferação de Células , Hidrazonas/farmacologia , Pirrolidinonas/farmacologia , Linhagem Celular Tumoral , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
6.
ACS Omega ; 8(47): 44571-44577, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38046347

RESUMO

Aqueous solubility of pharmaceutical substances plays an important role in small molecule drug discovery and development, with ionizable groups often employed to enhance solubility. Drug candidate compounds often contain ionizable groups to increase their solubility. Recognizing that the electrostatically charged form of the compound is much more soluble than the uncharged form, this work proposes a model to explore the relationship between the pKa shift of the ionizable group and dissolution equilibria. The model considers three forms of a compound: dissolved-charged, dissolved-uncharged, and aggregated-uncharged. It analyzes two linked equilibria: the protonation of the ionizable group and the dissolution-aggregation of the uncharged form, with the observed pKa shift depending on the total concentration of the compound. The active concentration of the aggregates determines this shift. The model was explored through the determination of the pKa shift and intrinsic solubility of specific compounds, such as ICPD47, a high-affinity inhibitor of the Hsp90 chaperone protein and anticancer target, as well as benzoic acid and benzydamine. The model holds the potential for a more nuanced understanding of intrinsic solubility and may lead to advancements in drug discovery and development.

7.
Int J Mol Sci ; 24(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38069128

RESUMO

The title compounds were synthesized by the reaction of 5-oxo-1-(4-(phenylamino)phenyl)pyrrolidine-3-carbohydrazide with various aldehydes bearing aromatic and heterocyclic moieties and acetophenones, and their cytotoxicity was tested via MTT assay against human triple-negative breast cancer MDA-MB-231, human melanoma IGR39, human pancreatic carcinoma Panc-1, and prostate cancer cell line PPC-1. Furthermore, the selectivity of compounds towards cancer cells compared to fibroblasts was also investigated. Four compounds were identified as the most promising anticancer agents out of a series of pyrrolidinone-hydrazone derivatives bearing a diphenylamine moiety. These compounds were most selective against the prostate cancer cell line PPC-1 and the melanoma cell lines IGR39, with EC50 values in the range of 2.5-20.2 µM against these cell lines. In general, the compounds were less active against triple-negative breast cancer MDA-MB-231 cell line, and none of them showed an inhibitory effect on the migration of these cells. In the 'wound healing' assay, N'-((5-nitrothiophen-2-yl)methylene)-5-oxo-1-(4-(phenylamino)phenyl)pyrrolidine-3-carbohydrazide was identified as the most promising derivative that could be further developed as an antimetastatic agent. N'-(5-chloro- and N'-(3,4-dichlorobenzylidene)-5-oxo-1-(4-(phenylamino)phenyl)pyrrolidine-3-carbohydrazides most efficiently reduced the cell viability in IGR39 cell spheroids, while there was no effect of the investigated pyrrolidinone-hydrazone derivatives on PPC-1 3D cell cultures. Antioxidant activity determined via FRAP assay of N'-(1-(4-aminophenyl)ethylidene)-5-oxo-1-(4-(phenylamino)phenyl)pyrrolidine-3-carbohydrazide was 1.2 times higher than that of protocatechuic acid.


Assuntos
Antineoplásicos , Melanoma , Neoplasias da Próstata , Neoplasias de Mama Triplo Negativas , Masculino , Humanos , Antioxidantes/farmacologia , Hidrazonas/farmacologia , Difenilamina/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Proliferação de Células , Antineoplásicos/farmacologia , Pirrolidinonas/farmacologia , Pirrolidinas/farmacologia , Relação Estrutura-Atividade , Linhagem Celular Tumoral
8.
Am J Cancer Res ; 13(8): 3368-3383, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37693129

RESUMO

Breast cancer is a rapidly evolving, multifactorial disease that accumulates numerous genetic and epigenetic alterations. These result in molecular and phenotypic heterogeneity within the tumor, the complexity of which is further amplified through specific interactions between cancer cells. We aimed to analyze cell phenotypic sublines and the influence of their interaction on drug resistance, spheroid formation, and migration. Seven sublines were derived from the MDA-MB-231 breast cancer cell line using a multiple-cell suspension dilution. The growth rate, CD133 receptor expression, migration ability, and chemosensitivity of these sublines to anticancer drugs doxorubicin (DOX) and paclitaxel (PTX) were determined. Three sublines (F5, D8, H2) have been chosen to study their interaction in 2D and 3D assays. In the 2D model, the resistance of all sublines composition to DOX decreased, but in the 3D model, the resistance of all sublines except H2, increased to both PTX and DOX. In the 3D model, the combined sublines F5 and D8 had higher resistance to DOX and statistically significantly lower resistance for PTX compared to the control. The interaction between cancer stem-like cells (F5) and increased migration cells (D8) increased resistance to PTX in cell monolayer and increased resistance against both DOX and PTX in the spheroids. The interaction of DOX-resistant (H2) cells with other cell subpopulations (D8, F5, HF) decreased the resistance to DOX in cell monolayer and both DOX and PTX in spheroids.

9.
Plast Reconstr Surg Glob Open ; 11(8): e5190, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37588478

RESUMO

Background: Autologous fat grafting is widely used in plastic and reconstructive surgery. Liposuction methods play a key role in surgeons' work efficiency, adipocyte viability, graft survival, and outcomes. We investigated the effect of four liposuction methods on adipocyte viability, debris, and surgeons' work efficiency by measuring the active energy expenditure and changes in heart rate. Methods: Human lipoaspirate was harvested from patients' removed abdominal flaps using four different liposuction methods, and we counted calories per aspirated volume and surgeons' heart rate. Adipocytes were separated from the lipoaspirate immediately by digestion with 0.1% type I collagenase. After digestion, parts of the cells and debris were measured. Adipocytes were plated in an adipocyte maintenance medium containing Alamar blue reagent. The adipocyte metabolic activity was measured using a spectrophotometer. Results: After evaluating the active energy expenditure and changes in surgeons' heart rate, the ultrasonic-assisted liposuction (UAL) method was determined to be the most ergonomic liposuction device for surgeons. In addition, adipocyte viability was higher in the UAL group than in the other groups, and debris was the lowest in the power-assisted liposuction 1 group (PAL1). Conclusions: Adipocyte viability is crucial for improving fat grafting outcomes. This study revealed that the viability of adipocytes is best preserved using the UAL and PAL1 liposuction methods. The UAL and PAL1 methods caused the least damage to the cells. The UAL method yielded the best results for surgeons' work efficiency.

10.
Am J Cancer Res ; 13(4): 1377-1386, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168355

RESUMO

This study aimed to evaluate the anticancer activity of 16 new sunitinib derivatives in brain cancer cells (2D model) and spheroids (3D model). The effect on cell viability was determined by the MTT assay. Single-cell migration assay was performed to examine the effect of selected compounds on individual cell migration. The activity of compounds in 3D cell cultures was examined by measuring the size change of spheroids formed using the Hanging drop method. The viability of brain cancer (U-87MG and A-172) cells was most reduced by compound EMAC4001. EMAC4001 showed the strongest effect on U-87MG cell migration, and EMAC4007 was the most active in the A-172 cell line. Only sunitinib had a statistically significant impact on spheroid growth at 100 nM and 500 nM concentrations in the U87-MG cell line and EMAC4007 had a statistically significant impact on A-172 spheroid growth at 100 nM and 500 nM concentrations, similarly to sunitinib.

11.
Int J Mol Sci ; 24(6)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36982496

RESUMO

Pancreatic cancer remains one of the deadliest cancer types. It is usually characterized by high resistance to chemotherapy. However, cancer-targeted drugs, such as sunitinib, recently have shown beneficial effects in pancreatic in vitro and in vivo models. Therefore, we chose to study a series of sunitinib derivatives developed by us, that were proven to be promising compounds for cancer treatment. The aim of our research was to evaluate the anticancer activity of sunitinib derivatives in human pancreatic cancer cell lines MIA PaCa-2 and PANC-1 under normoxia and hypoxia. The effect on cell viability was determined by the MTT assay. The compound effect on cell colony formation and growth was established by clonogenic assay and the activity on cell migration was estimated using a 'wound healing' assay. Six out of 17 tested compounds at 1 µM after 72 h of incubation reduced cell viability by 90% and were more active than sunitinib. Compounds for more detailed experiments were chosen based on their activity and selectivity towards cancer cells compared to fibroblasts. The most promising compound EMAC4001 was 24 and 35 times more active than sunitinib against MIA PaCa-2 cells, and 36 to 47 times more active against the PANC-1 cell line in normoxia and hypoxia. It also inhibited MIA PaCa-2 and PANC-1 cell colony formation. Four tested compounds inhibited MIA PaCa-2 and PANC-1 cell migration under hypoxia, but none was more active than sunitinib. In conclusion, sunitinib derivatives possess anticancer activity in human pancreatic adenocarcinoma MIA PaCa-2 and PANC-1 cell lines, and they are promising for further research.


Assuntos
Adenocarcinoma , Antineoplásicos , Neoplasias Pancreáticas , Humanos , Sunitinibe/farmacologia , Sunitinibe/uso terapêutico , Neoplasias Pancreáticas/patologia , Adenocarcinoma/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Técnicas de Cultura de Células , Hipóxia/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Pancreáticas
12.
PLoS One ; 18(3): e0283289, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36952512

RESUMO

A series of new derivatives based on sulfamethoxazole were designed and synthesized in this study. The structures of the new compounds were confirmed based on a comprehensive characterization of spectral data by applied IR and 1H as well as 13C NMR spectroscopy. The prepared compounds were tested for their anticancer and antimicrobial properties. Hydrazone 16b demonstrated convincing anticancer effect against all tested cell cultures such as human prostate carcinoma PPC-1 and human kidney carcinoma CaKi-1 cell lines, and human fibroblasts HF, n = 3. The most promising compound 16b showed higher activity against CaKi-1 cell line than the anticancer drugs axitinib and pazopanib used to treat renal cancer. Also, it was more active in the PPC-1 cell line compared to the approved PARP inhibitor Olaparib. Hydrazone 16b was also found to possess good antimicrobial properties against gram-positive bacteria strains of Staphylococcus aureus, Staphylococcus epidermidis, as well as Bacillus cereus.


Assuntos
Anti-Infecciosos , Antineoplásicos , Carcinoma , Humanos , Antibacterianos/química , Sulfametoxazol , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Antineoplásicos/química , Hidrazonas/farmacologia , Relação Estrutura-Atividade
13.
Drug Resist Updat ; 68: 100956, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36958083

RESUMO

Multidrug resistance (MDR) is currently a big challenge in cancer therapy and limits its success in several patients. Tumors use the MDR mechanisms to colonize the host and reduce the efficacy of chemotherapeutics that are injected as single agents or combinations. MDR mechanisms are responsible for inactivation of drugs and formbiological barriers in cancer like the drug efflux pumps, aberrant extracellular matrix, hypoxic areas, altered cell death mechanisms, etc. Nanocarriers have some potential to overcome these barriers and improve the efficacy of chemotherapeutics. In fact, they are versatile and can deliver natural and synthetic biomolecules, as well as RNAi/DNAi, thus providing a controlled release of drugs and a synergistic effect in tumor tissues. Biocompatible and safe multifunctional biopolymers, with or without specific targeting molecules, modify the surface and interface properties of nanocarriers. These modifications affect the interaction of nanocarriers with cellular models as well as the selection of suitable models for in vitro experiments. MDR cancer cells, and particularly their 2D and 3D models, in combination with anatomical and physiological structures of tumor tissues, can boost the design and preparation of nanomedicines for anticancer therapy. 2D and 3D cancer cell cultures are suitable models to study the interaction, internalization, and efficacy of nanocarriers, the mechanisms of MDR in cancer cells and tissues, and they are used to tailor a personalized medicine and improve the efficacy of anticancer treatment in patients. The description of molecular mechanisms and physio-pathological pathways of these models further allow the design of nanomedicine that can efficiently overcome biological barriers involved in MDR and test the activity of nanocarriers in 2D and 3D models of MDR cancer cells.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Resistência a Múltiplos Medicamentos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Nanomedicina , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/química , Resistencia a Medicamentos Antineoplásicos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
14.
Antioxidants (Basel) ; 12(2)2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36830023

RESUMO

Fruit and leaf cuticular waxes are valuable source materials for the isolation of triterpenoids that can be applied as natural antioxidants and anticancer agents. The present study aimed at the semi-preparative fractionation of triterpenoids from cuticular wax extracts of Vaccinium vitis-idaea L. (lingonberry) leaves and fruits and the evaluation of their cytotoxic potential. Qualitative and quantitative characterization of obtained extracts and triterpenoid fractions was performed using HPLC-PDA method, followed by complementary analysis by GC-MS. For each fraction, cytotoxic activities towards the human colon adenocarcinoma cell line (HT-29), malignant melanoma cell line (IGR39), clear renal carcinoma cell line (CaKi-1), and normal endothelial cells (EC) were determined using MTT assay. Furthermore, the effect of the most promising samples on cancer spheroid growth and viability was examined. This study allowed us to confirm that particular triterpenoid mixtures from lingonberry waxes may possess stronger cytotoxic activities than crude unpurified extracts. Fractions containing triterpenoid acids plus fernenol, complexes of oleanolic:ursolic acids, and erythrodiol:uvaol were found to be the most potent therapeutic candidates in the management of cancer diseases. The specificity of cuticular wax extracts of lingonberry leaves and fruits, leading to different purity and anticancer potential of obtained counterpart fractions, was also enclosed. These findings contribute to the profitable utilization of lingonberry cuticular waxes and provide considerable insights into the anticancer effects of particular triterpenoids and pharmacological interactions.

15.
Pharmaceutics ; 14(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36559087

RESUMO

Cancer cells' resistance to anticancer drugs represents a major clinical problem and the most important failure of treatment. Combination chemotherapy is more effective than monotherapy due to additive or synergistic effects. The aim of our research was to assess the effects of the combinations of apple extract's triterpenic compounds, individual triterpenic acids, and doxorubicin (DOX) on human colon adenocarcinoma (HT-29) and human glioblastoma (U-87) cell lines in 2D and 3D cultures. The effect of the combination of apple extracts, the triterpenic standards, and DOX against HT-29 and U-87 cell viability was tested by the MTT and spheroid growth assays. Cell line HT-29 was more sensitive to DOX when incubated with all tested apple extracts than DOX alone. Cell line HT-29 was the most strongly sensitive to DOX when it was treated with 5 µM oleanolic acid (change of EC50 = -64.6% ± 4.4%) and with 5 µM ursolic acid (change of EC50 = -61.9% ± 8.8%) in 2D culture. Meanwhile, cell line U-87 was the most strongly sensitive to DOX when treated with 2 µM betulinic acid (change of EC50 = -45.1% ± 4.5%) in 2D culture. The combination of apple extract (E3) and DOX reduced the viability of HT-29 spheroids the most (spheroid viability reduced from -19.9% to -10.9%, compared to spheroids treated with DOX alone). Our study in 2D and 3D cultures showed that combining apple extract's triterpenic complexes or individual triterpenic acids with DOX may sensitize chemotherapeutic drugs and increase the cytotoxicity effects in HT-29 and U-87 cell lines.

16.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36015174

RESUMO

4-Phenyl-3-[2-(phenylamino)ethyl]-1H-1,2,4-triazole-5(4H)-thione was used as a starting compound for the synthesis of the corresponding 1,2,4-triazol-3-ylthioacetohydrazide, which reacts with isatins and various aldehydes bearing aromatic and heterocyclic moieties provided target hydrazones. Their cytotoxicity was tested by the MTT assay against human melanoma IGR39, human triple-negative breast cancer (MDA-MB-231), and pancreatic carcinoma (Panc-1) cell lines. The selectivity of compounds towards cancer cells was also studied. In general, the synthesized compounds were more cytotoxic against the melanoma cell line. N'-(2-oxoindolin-3-ylidene)-2-((4-phenyl-5-(2-(phenylamino)ethyl)-4H-1,2,4-triazol-3-yl)thio)acetohydrazide, N'-((1H-pyrrol-2-yl)methylene)-2-((4-phenyl-5-(2-(phenylamino)ethyl)-4H-1,2,4-triazol-3-yl)thio)acetohydrazide and N'-(2-hydroxy-5-nitrobenzylidene)-2-((4-phenyl-5-(2-(phenylamino)ethyl)-4H-1,2,4-triazol-3-yl)thio)acetohydrazide were identified as the most active among all synthesized compounds in 3D cell cultures. N'-(4-(dimethylamino)benzylidene)-2-((4-phenyl-5-(2-(phenylamino)ethyl)-4H-1,2,4-triazol-3-yl)thio)acetohydrazide inhibited all cancer cell migration, was characterized as relatively more selective towards cancer cells, and could be further tested as an antimetastatic candidate.

17.
Am J Cancer Res ; 12(6): 2526-2538, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812069

RESUMO

The aim of the research was to evaluate the influence of two P-glycoprotein (P-gp) inhibitors silymarin and quercetin on anticancer drug doxorubicin (DOX) and pegylated liposomal doxorubicin (PLD) delivery into breast cancer cells (2D cultures) and cancer cell spheroids (3D cultures) at different pH. The cytotoxicity of the compounds was assessed using MTT assay. Spheroids were generated using magnetic 3D Bioprinting method. The uptake of DOX and PLD into monolayer-cultured cells and spheroids was assessed by fluorescence microscopy. Both tested flavonoids did not increase DOX and PLD levels into monolayer-cultured 4T1 cells and 4T1 cell spheroids. However, both silymarin and quercetin enhanced DOX and PLD uptake into JC cell cultures. Silymarin and quercetin may modulate DOX and PLD transport into monolayer-cultured cells and three-dimensional cancer cell cultures depending on P-gp activity.

18.
Molecules ; 27(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35335303

RESUMO

Beta adrenoblockers are a large class of drugs used to treat cardiovascular diseases, migraines, glaucoma and hyperthyroidism. Over the last couple of decades, the anticancer effects of these compounds have been extensively studied. However, the exact mechanism is still not known, and more detailed studies are required. The aim of our study was to evaluate the anticancer activity of beta adrenoblockers in non-small cell lung cancer cell lines A549 and H1299. In order to find the relationship with their selectivity to beta adrenoreceptors, selective (atenolol, betaxolol, esmolol, metoprolol) and non-selective (pindolol, propranolol and timolol) beta blockers were tested. The effect on cell viability was evaluated by MTT assay, and the activity on cell ability to form colonies was tested by clonogenic assay. The type of cell death was evaluated by cell double staining with Hoechst 33342 and Propidium iodide. The most active adrenoblockers against both tested cancer cell lines were propranolol and betaxolol. They completely inhibited lung cancer cell colony formation at 90% of the EC50 (half-maximal effective concentration) value. Most tested compounds induced cell death through apoptosis and necrosis. There was no correlation established between beta adrenoblocker anticancer activity and their selectivity to beta adrenoreceptors.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Antagonistas Adrenérgicos beta/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Propranolol/farmacologia
19.
Nanomaterials (Basel) ; 11(12)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34947606

RESUMO

The current diagnostic and therapeutic strategies for endometriosis are limited. Although endometriosis is a benign condition, some of its traits, such as increased cell invasion, migration, tissue inflammation, and angiogenesis are similar to cancer. Here we explored the application of homing peptides for precision delivery of diagnostic and therapeutic compounds to endometriotic lesions. First, we audited a panel of peptide phages for the binding to the cultured immortalized endometriotic epithelial 12Z and eutopic stromal HESC cell lines. The bacteriophages displaying PL1 peptide that engages with angiogenic extracellular matrix overexpressed in solid tumors showed the strongest binding to both cell lines. The receptors of PL1 peptide, tenascin C domain C (TNC-C) and fibronectin Extra Domain-B (Fn-EDB), were expressed in both cells. Silver nanoparticles functionalized with synthetic PL1 peptide showed specific internalization in 12Z and HESC cells. Treatment with PL1-nanoparticles loaded with the potent antimitotic drug monomethyl auristatin E decreased the viability of endometriotic cells in 2D and 3D cultures. Finally, PL1-nanoparticless bound to the cryosections of clinical peritoneal endometriotic lesions in the areas positive for TNC-C and Fn-EDB immunoreactivities and not to sections of normal endometrium. Our findings suggest potential applications for PL1-guided nanoparticles in precision diagnosis and therapy of endometriosis.

20.
Pharmaceuticals (Basel) ; 14(11)2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34832940

RESUMO

Heterocyclic compounds are one of the main groups of organic compounds possessing wide range of applications in various areas of science and their derivatives are present in many bioactive structures. They display a wide variety of biological activities. Recently, more and more attention has been focused to such heterocyclic compounds as azoles. In this work, we have synthesized a series of new imidazole derivatives incorporating a benzenesulfonamide moiety in their structure, which then were evaluated for their cytotoxicity against human triple-negative breast cancer MDA-MB-231 and human malignant melanoma IGR39 cell lines by MTT assay. Benzenesulfonamide-bearing imidazole derivatives containing 4-chloro and 3,4-dichlorosubstituents in benzene ring, and 2-ethylthio and 3-ethyl groups in imidazole ring have been determined as the most active compounds. Half-maximal effective concentration (EC50) of the most cytotoxic compound was 27.8 ± 2.8 µM against IGR39 cell line and 20.5 ± 3.6 µM against MDA-MB-231 cell line. Compounds reduced cell colony formation of both cell lines and inhibited the growth and viability of IGR39 cell spheroids more efficiently compared to triple-negative breast cancer spheroids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA