Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(18): 10756-10771, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36165847

RESUMO

A variety of single-gene human diseases are caused by haploinsufficiency, a genetic condition by which mutational inactivation of one allele leads to reduced protein levels and functional impairment. Translational enhancement of the spare allele could exert a therapeutic effect. Here we developed BOOST, a novel gene-editing approach to rescue haploinsufficiency loci by the change of specific single nucleotides in the Kozak sequence, which controls translation by regulating start codon recognition. We evaluated for translational strength 230 Kozak sequences of annotated human haploinsufficient genes and 4621 derived variants, which can be installed by base editing, by a high-throughput reporter assay. Of these variants, 149 increased the translation of 47 Kozak sequences, demonstrating that a substantial proportion of haploinsufficient genes are controlled by suboptimal Kozak sequences. Validation of 18 variants for 8 genes produced an average enhancement in an expression window compatible with the rescue of the genetic imbalance. Base editing of the NCF1 gene, whose monoallelic loss causes chronic granulomatous disease, resulted in the desired increase of NCF1 (p47phox) protein levels in a relevant cell model. We propose BOOST as a fine-tuned approach to modulate translation, applicable to the correction of dozens of haploinsufficient monogenic disorders independently of the causing mutation.


Assuntos
Haploinsuficiência , Nucleotídeos , Alelos , Códon de Iniciação , Haploinsuficiência/genética , Humanos , RNA Mensageiro/metabolismo
2.
Nature ; 602(7898): 701-707, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35173328

RESUMO

Hydrolase enzymes, including proteases, are encoded by 2-3% of the genes in the human genome and 14% of these enzymes are active drug targets1. However, the activities and substrate specificities of many proteases-especially those embedded in membranes-and other hydrolases remain unknown. Here we report a strategy for creating mechanism-based, light-activated protease and hydrolase substrate traps in complex mixtures and live mammalian cells. The traps capture substrates of hydrolases, which normally use a serine or cysteine nucleophile. Replacing the catalytic nucleophile with genetically encoded 2,3-diaminopropionic acid allows the first step reaction to form an acyl-enzyme intermediate in which a substrate fragment is covalently linked to the enzyme through a stable amide bond2; this enables stringent purification and identification of substrates. We identify new substrates for proteases, including an intramembrane mammalian rhomboid protease RHBDL4 (refs. 3,4). We demonstrate that RHBDL4 can shed luminal fragments of endoplasmic reticulum-resident type I transmembrane proteins to the extracellular space, as well as promoting non-canonical secretion of endogenous soluble endoplasmic reticulum-resident chaperones. We also discover that the putative serine hydrolase retinoblastoma binding protein 9 (ref. 5) is an aminopeptidase with a preference for removing aromatic amino acids in human cells. Our results exemplify a powerful paradigm for identifying the substrates and activities of hydrolase enzymes.


Assuntos
Peptídeo Hidrolases , Serina Endopeptidases , Animais , Proteínas de Ciclo Celular , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Mamíferos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias , Peptídeo Hidrolases/metabolismo , Serina/metabolismo , Especificidade por Substrato
3.
Cell Death Dis ; 11(12): 1039, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33288740

RESUMO

Therapy resistance is a major roadblock in oncology. Exacerbation of molecular dysfunctions typical of cancer cells have proven effective in twisting oncogenic mechanisms to lethal conditions, thus offering new therapeutic avenues for cancer treatment. Here, we demonstrate that selective agonists of Transient Receptor Potential cation channel subfamily M member 8 (TRPM8), a cation channel characteristic of the prostate epithelium frequently overexpressed in advanced stage III/IV prostate cancers (PCa), sensitize therapy refractory models of PCa to radio, chemo or hormonal treatment. Overall, our study demonstrates that pharmacological-induced Ca2+ cytotoxicity is an actionable strategy to sensitize cancer cells to standard therapies.


Assuntos
Cálcio/toxicidade , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Anilidas/farmacologia , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Masculino , Mentol/análogos & derivados , Mentol/farmacologia , Modelos Biológicos , Estadiamento de Neoplasias , Canais de Cátion TRPM/metabolismo , Raios X
4.
Nat Commun ; 11(1): 5457, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093446

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Nat Commun ; 10(1): 3556, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31391465

RESUMO

Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations in the CFTR gene. The 3272-26A>G and 3849+10kbC>T CFTR mutations alter the correct splicing of the CFTR gene, generating new acceptor and donor splice sites respectively. Here we develop a genome editing approach to permanently correct these genetic defects, using a single crRNA and the Acidaminococcus sp. BV3L6, AsCas12a. This genetic repair strategy is highly precise, showing very strong discrimination between the wild-type and mutant sequence and a complete absence of detectable off-targets. The efficacy of this gene correction strategy is verified in intestinal organoids and airway epithelial cells derived from CF patients carrying the 3272-26A>G or 3849+10kbC>T mutations, showing efficient repair and complete functional recovery of the CFTR channel. These results demonstrate that allele-specific genome editing with AsCas12a can correct aberrant CFTR splicing mutations, paving the way for a permanent splicing correction in genetic diseases.


Assuntos
Acidaminococcus/genética , Proteínas Associadas a CRISPR/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/terapia , Edição de Genes/métodos , Alelos , Proteínas de Bactérias/genética , Biópsia , Técnicas de Cultura de Células , Linhagem Celular , Fibrose Cística/genética , Fibrose Cística/patologia , Endonucleases/genética , Humanos , Intestinos/patologia , Organoides , Mutação Puntual , Sítios de Splice de RNA/genética , Splicing de RNA/genética
6.
J Mol Biol ; 431(2): 123-141, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30367842

RESUMO

Translational stalling of ribosome bound to endoplasmic reticulum (ER) membrane requires an accurate clearance of the associated polypeptides, which is not completely understood in mammals. We characterized in mammalian cells the model of ribosomal stalling at the STOP-codon based on proteins tagged at the C-terminus with the picornavirus 2A peptide followed by a termination codon instead of the Proline (2A*). We exploited the 2A* stalling model to characterize the pathway of degradation of ER-targeted polypeptides. We report that the ER chaperone BiP/GRP78 is a new main factor involved. Moreover, degradation of the ER-stalled polypeptides required the activities of the AAA-ATPase VCP/p97, its associated deubiquitinylase YOD1, the ribosome-associated ubiquitin ligase Listerin and the proteasome. In human proteome, we found two human C-terminal amino acid sequences that cause similar stalling at the STOP-codon. Our data suggest that translational stalling at the ER membrane activates protein degradation at the interface of ribosomal- and ER-associated quality control systems.


Assuntos
Códon de Terminação/genética , Degradação Associada com o Retículo Endoplasmático/genética , Proteínas de Choque Térmico/genética , Ribossomos/genética , Adenosina Trifosfatases/genética , Sequência de Aminoácidos/genética , Animais , Linhagem Celular , Endopeptidases/genética , Retículo Endoplasmático/genética , Chaperona BiP do Retículo Endoplasmático , Células HEK293 , Humanos , Mamíferos/genética , Chaperonas Moleculares , Proteínas Nucleares/genética , Peptídeos/genética , Prolina/genética , Complexo de Endopeptidases do Proteassoma/genética , Biossíntese de Proteínas/genética , Proteólise , Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética
7.
Nat Commun ; 8(1): 48, 2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28663546

RESUMO

Prostate cancer is a highly heritable molecularly and clinically heterogeneous disease. To discover germline events involved in prostate cancer predisposition, we develop a computational approach to nominate heritable facilitators of somatic genomic events in the context of the androgen receptor signaling. Here, we use a ranking score and benign prostate transcriptomes to identify a non-coding polymorphic regulatory element at 7p14.3 that associates with DNA repair and hormone-regulated transcript levels and with an early recurrent prostate cancer-specific somatic mutation in the Speckle-Type POZ protein (SPOP) gene. The locus shows allele-specific activity that is concomitantly modulated by androgen receptor and by CCAAT/enhancer-binding protein (C/EBP) beta (CEBPB). Deletion of this locus via CRISPR-Cas9 leads to deregulation of the genes predicted to interact with the 7p14.3 locus by Hi-C chromosome conformation capture data. This study suggests that a polymorphism at 7p14.3 may predispose to SPOP mutant prostate cancer subclass through a hormone-dependent DNA damage response.Prostate cancer is a heterogeneous disease, and many cases show somatic mutations of SPOP. Here, the authors show that a non-coding polymorphic regulatory element at 7p14.3 may predispose to SPOP mutant prostate cancer subclass through a hormone dependent DNA damage response.


Assuntos
Recidiva Local de Neoplasia , Neoplasias da Próstata/genética , Transcriptoma , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/fisiologia , Genótipo , Humanos , Masculino , Mutação
8.
J Biotechnol ; 231: 239-249, 2016 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-27312702

RESUMO

About thirty years ago, studies on the RNA genome of Tobacco Etch Virus revealed the presence of an efficient and specific protease, called Tobacco Etch Virus protease (TEVp), that was part of the Nuclear Inclusion a (NIa) enzyme. TEVp is an efficient and specific protease of 27kDa that has become a valuable biotechnological tool. Nowadays TEVp is a unique endopeptidase largely exploited in biotechnology from industrial applications to in vitro and in vivo cellular studies. A number of TEVp mutants with different rate of cleavage, stability and specificity have been reported. Similarly, a panel of different target cleavage sites, derived from the canonical ENLYFQ-G/S site, has been established. In this review we describe these aspects of TEVp and some of its multiple applications. A particular focus is on the use and molecular biology of TEVp in living cells and organisms.


Assuntos
Biotecnologia/métodos , Endopeptidases , Engenharia de Proteínas/métodos , Escherichia coli/genética , Escherichia coli/metabolismo
9.
J Biol Chem ; 290(47): 28175-28188, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26463207

RESUMO

Endoplasmic reticulum-associated degradation (ERAD) is an essential quality control mechanism of the folding state of proteins in the secretory pathway that targets unfolded/misfolded polypeptides for proteasomal degradation. The cytosolic p97/valosin-containing protein is an essential ATPase for degradation of ERAD substrates. It has been considered necessary during retro-translocation to extract proteins from the endoplasmic reticulum that are otherwise supposed to accumulate in the endoplasmic reticulum lumen. The activity of the p97-associated deubiquitinylase YOD1 is also required for substrate disposal. We used the in vivo biotinylation retro-translocation assay in mammalian cells under conditions of impaired p97 or YOD1 activity to directly discriminate their requirements and diverse functions in ERAD. Using different ERAD substrates, we found that both proteins participate in two distinct retro-translocation steps. For CD4 and MHC-Iα, which are induced to degradation by the HIV-1 protein Vpu and by the CMV immunoevasins US2 and US11, respectively, p97 and YOD1 have a retro-translocation-triggering role. In contrast, for three other spontaneous ERAD model substrates (NS1, NHK-α1AT, and BST-2/Tetherin), p97 and YOD1 are required in the downstream events of substrate deglycosylation and proteasomal degradation.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Endopeptidases/metabolismo , Degradação Associada com o Retículo Endoplasmático , Tioléster Hidrolases/metabolismo , Antígenos CD4/metabolismo , Células HEK293 , Humanos , Transporte Proteico , Proteína com Valosina
10.
J Biotechnol ; 212: 159-66, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26327323

RESUMO

Tobacco etch virus protease (TEVp) is a unique endopeptidase with stringent substrate specificity. TEVp has been widely used as a purified protein for in vitro applications, but also as a biological tool directly expressing it in living cells. To adapt the protease to diverse applications, several TEVp mutants with different stability and enzymatic properties have been reported. Herein we describe the development of a novel engineered TEVp mutant designed to be active in the secretory pathway. While wild type TEVp targeted to the secretory pathway of mammalian cells is synthetized as an N-glycosylated and catalytically inactive enzyme, a TEVp mutant with selected mutations at two verified N-glycosylation sites and at an exposed cysteine was highly efficient. This mutant was very active in the endoplasmic reticulum (ER) of living cells and can be used as a biotechnological tool to cleave proteins within the secretory pathway. As an immediate practical application we report the expression of a complete functional monoclonal antibody expressed from a single polypeptide, which was cleaved by our TEVp mutant into the two antibody chains and secreted as an assembled and functional molecule. In addition, we show active TEVp mutants lacking auto-cleavage activity.


Assuntos
Endopeptidases/genética , Endopeptidases/metabolismo , Via Secretória , Anticorpos Monoclonais/metabolismo , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Imunoglobulina G/imunologia , Mutação , Peptídeos/metabolismo
11.
J Biol Chem ; 289(1): 1-12, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24257748

RESUMO

CD4 and BST-2/Tetherin are cellular membrane proteins targeted to degradation by the HIV-1 protein Vpu. In both cases proteasomal degradation following recruitment into the ERAD pathway has been described. CD4 is a type I transmembrane glycoprotein, with four extracellular immunoglobulin-like domains containing three intrachain disulfide bridges. BST-2/Tetherin is an atypical type II transmembrane glycoprotein with an N-terminal transmembrane domain and a C-terminal glycophosphatidylinositol anchor, which dimerizes through three interchain bridges. We investigated spontaneous and Vpu-induced retro-translocation of CD4 and BST-2/Tetherin using our novel biotinylation technique in living cells to determine ER-to-cytosol retro-translocation of proteins. We found that CD4 retro-translocates with oxidized intrachain disulfide bridges, and only upon proteasomal inhibition does it accumulate in the cytosol as already reduced and deglycosylated molecules. Similarly, BST-2/Tetherin is first exposed to the cytosol as a dimeric oxidized complex and then becomes deglycosylated and reduced to monomers. These results raise questions on the required features of the putative retro-translocon, suggesting alternative retro-translocation mechanisms for membrane proteins in which complete cysteine reduction and unfolding are not always strictly required before ER to cytosol dislocation.


Assuntos
Antígenos CD/metabolismo , Antígenos CD4/metabolismo , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Complexos Multiproteicos/metabolismo , Dobramento de Proteína , Multimerização Proteica , Antígenos CD/genética , Antígenos CD4/genética , Retículo Endoplasmático/genética , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Células HEK293 , HIV-1/genética , HIV-1/metabolismo , Proteínas do Vírus da Imunodeficiência Humana/genética , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Humanos , Complexos Multiproteicos/genética , Oxirredução , Estrutura Terciária de Proteína , Transporte Proteico/genética , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA