Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 971048, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248832

RESUMO

Obesity is defined as the excessive accumulation of body fat and is associated with an increased risk of developing major health problems such as cardiovascular disease, diabetes and stroke. There are clear sexual dimorphisms in the epidemiology, pathophysiology and sequelae of obesity and its accompanying metabolic disorders, with females often better protected compared to males. This protection has predominantly been attributed to the female sex hormone estrogen and differences in fat distribution. More recently, the sexual dimorphisms of obesity have also been attributed to the differences in the composition and function of the gut microbiota, and the intestinal immune system. This review will comprehensively summarize the pre-clinical and clinical evidence for these sexual dimorphisms and discuss the interplay between sex hormones, intestinal inflammation and the gut microbiome in obesity. Major gaps and limitations of this rapidly growing area of research will also be highlighted in this review.


Assuntos
Hormônios Gastrointestinais , Microbioma Gastrointestinal , Estrogênios , Feminino , Hormônios Esteroides Gonadais/metabolismo , Humanos , Inflamação , Masculino , Obesidade , Caracteres Sexuais
2.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36256446

RESUMO

The taxonomic status of two Gordonia strains, designated BEN371 and CON9T, isolated from stable foams on activated sludge plants was the subject of a polyphasic study which also included the type strains of Gordonia species and three authenticated Gordonia amarae strains recovered from such foams. Phylogenetic analyses of 16S rRNA gene sequences showed that these isolates formed a compact cluster suggesting a well-supported lineage together with a second branch containing the G. amarae strains. A phylogenomic tree based on sequences of 92 core genes extracted from whole genome sequences of the isolates, the G. amarae strains and Gordonia type strains confirmed the assignment of the isolates and the G. amarae strains to separate but closely associated lineages. Average nucleotide index (ANI) and digital DNA-DNA hybridisation (dDDH) similarities showed that BEN371 and CON9T belonged to the same species and had chemotaxonomic and morphological features consistent with their assignment to the genus Gordonia. The isolates and the G. amarae strains were distinguished using a range of phenotypic features and by low ANI and dDDH values of 84.2 and 27.0 %, respectively. These data supplemented with associated genome characteristics show that BEN371 and CON9T represent a novel species of the genus Gordonia. The name proposed for members of this taxon is Gordonia pseudamarae sp. nov. with isolate CON9T (=DSM 43602T=JCM 35249T) as the type strain.


Assuntos
Actinobacteria , Bactéria Gordonia , Purificação da Água , Esgotos/microbiologia , RNA Ribossômico 16S/genética , Filogenia , DNA Bacteriano/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Ácidos Graxos/química , Nucleotídeos
3.
Water Res ; 221: 118729, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35714465

RESUMO

This comprehensive review looks critically what is known about members of the genus Defluviicoccus, an example of a glycogen accumulating organism (GAO), in wastewater treatment plants, but found also in other habitats. It considers the operating conditions thought to affect its performance in activated sludge plants designed to remove phosphorus microbiologically, including the still controversial view that it competes with the polyphosphate accumulating bacterium Ca. Accumulibacter for readily biodegradable substrates in the anaerobic zone receiving the influent raw sewage. It looks at its present phylogeny and what is known about it's physiology and biochemistry under the highly selective conditions of these plants, where the biomass is recycled continuously through alternative anaerobic (feed); aerobic (famine) conditions encountered there. The impact of whole genome sequence data, which have revealed considerable intra- and interclade genotypic diversity, on our understanding of its in situ behaviour is also addressed. Particular attention is paid to the problems in much of the literature data based on clone library and next generation DNA sequencing data, where Defluviicoccus identification is restricted to genus level only. Equally problematic, in many publications no attempt has been made to distinguish between Defluviicoccus and the other known GAO, especially Ca. Competibacter, which, as shown here, has a very different ecophysiology. The impact this has had and continues to have on our understanding of members of this genus is discussed, as is the present controversy over its taxonomy. It also suggests where research should be directed to answer some of the important research questions raised in this review.


Assuntos
Glicogênio , Purificação da Água , Reatores Biológicos/microbiologia , Fósforo , Filogenia , Esgotos/microbiologia
4.
Microbiol Resour Announc ; 10(35): e0047821, 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34472973

RESUMO

Enterobacter asburiae NCR1 is a plant growth-promoting rhizobacterium isolated from the rhizosphere of Carpobrotus rossii. We report the draft genome sequence of E. asburiae strain NCR1, which revealed many genes facilitating beneficial interactions with plant hosts.

5.
Front Microbiol ; 12: 650849, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868210

RESUMO

Enterococcus faecalis is an opportunistic pathogen in the gut microbiota that's associated with a range of difficult to treat nosocomial infections. It is also known to be associated with some colorectal cancers. Its resistance to a range of antibiotics and capacity to form biofilms increase its virulence. Unlike antibiotics, bacteriophages are capable of disrupting biofilms which are key in the pathogenesis of diseases such as UTIs and some cancers. In this study, bacteriophage EFA1, lytic against E. faecalis, was isolated and its genome fully sequenced and analyzed in silico. Electron microscopy images revealed EFA1 to be a Siphovirus. The bacteriophage was functionally assessed and shown to disrupt E. faecalis biofilms as well as modulate the growth stimulatory effects of E. faecalis in a HCT116 colon cancer cell co-culture system, possibly via the effects of ROS. The potential exists for further testing of bacteriophage EFA1 in these systems as well as in vivo models.

6.
Viruses ; 12(10)2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33049935

RESUMO

Achromobacter spp. are becoming increasingly associated with lung infections in patients suffering from cystic fibrosis (CF). A. marplatensis, which is closely related to A. xylosoxidans, has been isolated from the lungs of CF patients and other human infections. This article describes the isolation, morphology and characterization of two lytic bacteriophages specific for an A. marplatensis strain isolated from a pneumonia patient. This host strain was the causal agent of hospital acquired pneumonia-the first clinical report of such an occurrence. Full genome sequencing revealed bacteriophage genomes ranging in size from 45901 to 46,328 bp. Transmission electron microscopy revealed that the two bacteriophages AMA1 and AMA2 belonged to the Siphoviridae family. Host range analysis showed that their host range did not extend to A. xylosoxidans. The possibility exists for future testing of such bacteriophages in the control of Achromobacter infections such as those seen in CF and other infections of the lungs. The incidence of antibiotic resistance in this genus highlights the importance of seeking adjuncts and alternatives in CF and other lung infections.


Assuntos
Achromobacter/virologia , Lisogenia/genética , Pneumonia Bacteriana/microbiologia , Siphoviridae/genética , Siphoviridae/isolamento & purificação , Fibrose Cística/microbiologia , DNA Viral/genética , Genoma Viral/genética , Infecções por Bactérias Gram-Negativas/diagnóstico , Infecções por Bactérias Gram-Negativas/microbiologia , Especificidade de Hospedeiro/fisiologia , Humanos , Pulmão/microbiologia , Pulmão/patologia , Siphoviridae/classificação , Replicação Viral/fisiologia
7.
Sci Rep ; 9(1): 9107, 2019 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-31235721

RESUMO

Fusobacterium nucleatum is an important oral bacterium that has been linked to the development of chronic diseases such as periodontitis and colorectal cancer. In periodontal disease, F. nucleatum forms the backbone of the polymicrobial biofilm and in colorectal cancer is implicated in aetiology, metastasis and chemotherapy resistance. The control of this bacteria may be important in assisting treatment of these diseases. With increased rates of antibiotic resistance globally, there is need for development of alternatives such as bacteriophages, which may complement existing therapies. Here we describe the morphology, genomics and functional characteristics of FNU1, a novel bacteriophage lytic against F. nucleatum. Transmission electron microscopy revealed FNU1 to be a large Siphoviridae virus with capsid diameter of 88 nm and tail of approximately 310 nm in length. Its genome was 130914 bp, with six tRNAs, and 8% of its ORFs encoding putative defence genes. FNU1 was able to kill cells within and significantly reduce F. nucleatum biofilm mass. The identification and characterisation of this bacteriophage will enable new possibilities for the treatment and prevention of F. nucleatum associated diseases to be explored.


Assuntos
Bacteriófagos/genética , Bacteriófagos/fisiologia , Biofilmes , Fusobacterium nucleatum/fisiologia , Fusobacterium nucleatum/virologia , Genômica , Viabilidade Microbiana , Fenótipo , Filogenia , RNA Bacteriano/genética , RNA de Transferência/genética
8.
ISME J ; 7(3): 543-54, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23178666

RESUMO

Members of the genus Tetrasphaera are considered to be putative polyphosphate accumulating organisms (PAOs) in enhanced biological phosphorus removal (EBPR) from wastewater. Although abundant in Danish full-scale wastewater EBPR plants, how similar their ecophysiology is to 'Candidatus Accumulibacter phosphatis' is unclear, although they may occupy different ecological niches in EBPR communities. The genomes of four Tetrasphaera isolates (T. australiensis, T. japonica, T. elongata and T. jenkinsii) were sequenced and annotated, and the data used to construct metabolic models. These models incorporate central aspects of carbon and phosphorus metabolism critical to understanding their behavior under the alternating anaerobic/aerobic conditions encountered in EBPR systems. Key features of these metabolic pathways were investigated in pure cultures, although poor growth limited their analyses to T. japonica and T. elongata. Based on the models, we propose that under anaerobic conditions the Tetrasphaera-related PAOs take up glucose and ferment this to succinate and other components. They also synthesize glycogen as a storage polymer, using energy generated from the degradation of stored polyphosphate and substrate fermentation. During the aerobic phase, the stored glycogen is catabolized to provide energy for growth and to replenish the intracellular polyphosphate reserves needed for subsequent anaerobic metabolism. They are also able to denitrify. This physiology is markedly different to that displayed by 'Candidatus Accumulibacter phosphatis', and reveals Tetrasphaera populations to be unusual and physiologically versatile PAOs carrying out denitrification, fermentation and polyphosphate accumulation.


Assuntos
Actinomycetales/fisiologia , Modelos Biológicos , Fósforo/metabolismo , Actinomycetales/classificação , Actinomycetales/genética , Actinomycetales/metabolismo , Betaproteobacteria/genética , Carbono/metabolismo , Genoma Bacteriano/genética , Filogenia , Polifosfatos/metabolismo , Águas Residuárias/microbiologia
9.
FEMS Microbiol Lett ; 297(2): 157-63, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19548893

RESUMO

Failure of a continuously aerated sequencing batch reactor (SBR) pilot plant-enhanced biological phosphorus removal (EBPR) process, designed to remove phosphorus from the clarified effluent from a conventional non-EBPR wastewater treatment plant, was associated with the dominance (c. 50% of the biovolume) of gammaproteobacterial coccobacilli. Flow cytometry and subsequent clone library generation from an enriched population of these Gammaproteobacteria showed that their 16S rRNA genes were most similar to partial clone sequences obtained from an actively denitrifying SBR community, and from anaerobic : aerobic EBPR communities. Under the SBR operating conditions used here, these cells stained for poly-beta-hydroxyalkanoates, but never polyphosphate. Applying FISH probes designed against them in combination with microautoradiography showed that they could also assimilate acetate 'aerobically'. FISH analyses of biomass samples from the full-scale treatment plant providing the pilot plant feed showed that they were present there in high numbers. However, they were not detected by FISH in laboratory-scale communities of the same aerated laboratory-scale EBPR process even when EBPR had failed, or from several full-scale EBPR plants or other activated sludge processes.


Assuntos
Gammaproteobacteria/classificação , Gammaproteobacteria/isolamento & purificação , Filogenia , Esgotos/microbiologia , Reatores Biológicos/microbiologia , DNA Bacteriano/genética , DNA Ribossômico/genética , Gammaproteobacteria/genética , Dados de Sequência Molecular , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA