Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Aging (Albany NY) ; 13(3): 3239-3253, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510044

RESUMO

The naked mole rat (NMR), Heterocephalus glaber, is the longest-living rodent species, and is extraordinarily resistant to cancer and aging-related diseases. The molecular basis for these unique phenotypic traits of the NMR is under extensive research. However, the role of regulated cell death (RCD) in the longevity and the protection from cancer in the NMR is still largely unknown. RCD is a mechanism restricting the proliferation of damaged or premalignant cells, which counteracts aging and oncotransformation. In this study, DNA damage-induced cell death in NMR fibroblasts was investigated in comparison to RCD in fibroblasts from Mus musculus. The effects of methyl methanesulfonate, 5-fluorouracil, and etoposide in both cell types were examined using contemporary cell death analyses. Skin fibroblasts from Heterocephalus glaber were found to be more resistant to the action of DNA damaging agents compared to fibroblasts from Mus musculus. Strikingly, our results revealed that NMR cells also exhibit a limited apoptotic response and seem to undergo regulated necrosis. Taken together, this study provides new insights into the mechanisms of cell death in NMR expanding our understanding of longevity, and it paves the way towards the development of innovative therapeutic approaches.


Assuntos
Longevidade/fisiologia , Ratos-Toupeira/fisiologia , Morte Celular Regulada/fisiologia , Animais , Células Cultivadas , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/fisiologia , Fibroblastos/citologia , Fibroblastos/fisiologia , Metanossulfonato de Metila/toxicidade , Camundongos , Morte Celular Regulada/efeitos dos fármacos
2.
Nucleic Acid Ther ; 29(5): 278-290, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31194620

RESUMO

Murine Krebs-2 tumor-initiating stem cells are known to natively internalize extracellular double-stranded DNA fragments. Being internalized, these fragments interfere in the repair of chemically induced interstrand cross-links. In the current investigation, 756 bp polymerase chain reaction (PCR) product containing bulky photoreactive dC adduct was used as extracellular DNA. This adduct was shown to inhibit the cellular system of nucleotide excision repair while being resistant to excision by this DNA repair system. The basic parameters for this DNA probe internalization by the murine Krebs-2 tumor cells were characterized. Being incubated under regular conditions (60 min, 24°C, 500 µL of the incubation medium, in the dark), 0.35% ± 0.18% of the Krebs-2 ascites cells were shown to natively internalize modified DNA. The saturating amount of the modified DNA was detected to be 0.37 µg per 106 cells. For the similar unmodified DNA fragments, this ratio is 0.73 µg per 106 cells. Krebs-2 tumor cells were shown to be saturated internalizing either (190 ± 40) × 103 molecules of modified DNA or (1,000 ± 100) × 103 molecules of native DNA. On internalization, the fragments of DNA undergo partial and nonuniform hydrolysis of 3' ends followed by circularization. The degree of hydrolysis, assessed by sequencing of several clones with the insertion of specific PCR product, was 30-60 nucleotides.


Assuntos
Carcinoma/genética , Adutos de DNA/genética , Fragmentação do DNA , DNA/genética , Animais , Carcinoma/patologia , Linhagem Celular Tumoral , DNA/farmacologia , Adutos de DNA/farmacologia , Reparo do DNA/efeitos dos fármacos , Humanos , Camundongos
3.
Aging (Albany NY) ; 10(6): 1454-1473, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29930219

RESUMO

Naked mole rat (NMR) is the long-lived and tumor-resistant rodent. NMRs possess multiple adaptations that may contribute to longevity and cancer-resistance. However, whether NMRs have more efficient DNA repair have not been directly tested. Here we compared base excision repair (BER) and nucleotide excision repair (NER) systems in extracts from NMR and mouse fibroblasts after UVC irradiation. Transcript levels of the key repair enzymes demonstrated in most cases higher inducibility in the mouse vs the NMR cells. Ratios of repair enzymes activities in the extracts somewhat varied depending on post-irradiation time. NMR cell extracts were 2-3-fold more efficient at removing the bulky lesions, 1.5-3-fold more efficient at removing uracil, and about 1.4-fold more efficient at cleaving the AP-site than the mouse cells, while DNA polymerase activities being as a whole higher in the mouse demonstrate different patterns of product distribution. The level of poly(ADP-ribose) synthesis was 1.4-1.8-fold higher in the NMR cells. Furthermore, NMR cell extracts displayed higher binding of PARP1 to DNA probes containing apurinic/apyrimidinic site or photo-reactive DNA lesions. Cumulatively, our results suggest that the NMR has more efficient excision repair systems than the mouse, which may contribute to longevity and cancer resistance of this species.


Assuntos
Reparo do DNA/fisiologia , DNA/efeitos da radiação , Fibroblastos/fisiologia , Fibroblastos/efeitos da radiação , Ratos-Toupeira , Raios Ultravioleta , Animais , DNA/fisiologia , Regulação da Expressão Gênica/fisiologia , Camundongos , RNA Mensageiro/metabolismo , Especificidade da Espécie , Fatores de Tempo
4.
Nucleic Acids Res ; 41(12): e123, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23609543

RESUMO

DNA probes for the studies of damaged strand excision during the nucleotide excision repair (NER) have been designed using the novel non-nucleosidic phosphoramidite reagents that contain N-[6-(9-antracenylcarbamoyl)hexanoyl]-3-amino-1,2-propandiol (nAnt) and N-[6-(5(6)-fluoresceinylcarbamoyl)hexanoyl]-3-amino-1,2-propandiol (nFlu) moieties. New lesion-imitating adducts being inserted into DNA show good substrate properties in NER process. Modified extended linear nFlu- and nAntr-DNA are suitable for estimation of specific excision activity catalysed with mammalian whole-cell extracts. The following substrate activity range was revealed for the model 137-bp linear double-stranded DNA: nAnt-DNA ≈ nFlu-DNA > Chol-DNA (Chol-DNA--legitimate NER substrate that contains non-nucleoside fragment bearing cholesterol residue). In vitro assay shows that modified DNA can be a useful tool to study NER activity in whole-cell extracts. The developed approach should be of general use for the incorporation of NER-sensitive distortions into model DNAs. The new synthetic extended linear DNA containing bulky non-nucleoside modifications will be useful for NER mechanism study and for applications.


Assuntos
Antracenos/química , Sondas de DNA/química , Reparo do DNA , Fluoresceínas/química , Organofosfatos/química , Animais , Células CHO , Linhagem Celular Tumoral , Cricetinae , Cricetulus , DNA/química , DNA/metabolismo , Sondas de DNA/síntese química , Humanos , Oligodesoxirribonucleotídeos/síntese química , Oligodesoxirribonucleotídeos/química , Compostos Organofosforados/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA