RESUMO
Relay neurons in dorsal thalamic nuclei can fire high-frequency bursts of action potentials that ride the crest of voltage-dependent transient (T-type) calcium currents [low-threshold spike (LTS)]. To explore potential nucleus-specific burst features, we compared the membrane properties of dorsal lateral geniculate nucleus (dLGN) and pulvinar nucleus relay neurons using in vitro whole-cell recording in juvenile and adult tree shrew (Tupaia) tissue slices. We injected current ramps of variable slope into neurons that were sufficiently hyperpolarized to de-inactivate T-type calcium channels. In a small percentage of juvenile pulvinar and dLGN neurons, an LTS could not be evoked. In the remaining juvenile neurons and in all adult dLGN neurons, a single LTS could be evoked by current ramps. However, in the adult pulvinar, current ramps evoked multiple LTSs in >70% of recorded neurons. Using immunohistochemistry, Western blot techniques, unbiased stereology, and confocal and electron microscopy, we found that pulvinar neurons expressed more T-type calcium channels (Ca(v) 3.2) and more small conductance potassium channels (SK2) than dLGN neurons and that the pulvinar nucleus contained a higher glia-to-neuron ratio than the dLGN. Hodgkin-Huxley-type compartmental models revealed that the distinct firing modes could be replicated by manipulating T-type calcium and SK2 channel density, distribution, and kinetics. The intrinsic properties of pulvinar neurons that promote burst firing in the adult may be relevant to the treatment of conditions that involve the adult onset of aberrant thalamocortical interactions.
Assuntos
Potenciais de Ação/fisiologia , Corpos Geniculados/fisiologia , Pulvinar/fisiologia , Tupaia/fisiologia , Fatores Etários , Animais , Corpos Geniculados/citologia , Pulvinar/citologia , Tálamo/citologia , Tálamo/fisiologiaRESUMO
PURPOSE: To demonstrate efficacy and safety of the implantation of neural retinal progenitor cell layers (sheets) with its retinal pigment epithelium (RPE) in retinitis pigmentosa (RP) and dry age-related macular degeneration (AMD) patients with 20/200 or worse vision in the surgery eye. DESIGN: Interventional nonrandomized clinical trial. METHODS: Ten patients (six RP, four AMD) received retinal implants in one eye and were followed in a phase II trial conducted in a clinical practice setting. Early Treatment Diabetic Retinopathy Study (EDTRS) was the primary outcome measure. All implant recipients and nine of 10 tissue donors were deoxyribonucleic acids typed. RESULTS: Seven patients (three RP, four AMD) showed improved EDTRS visual acuity (VA) scores. Three of these patients (one RP, two AMD) showed improvement in both eyes to the same extent. Vision in one RP patient remained the same, while vision in two RP patients decreased. One RP patient has maintained an improvement in vision from 20/800 to 20/200 ETDRS for more than five years; at the six-year examination, it was still maintained at 20/320 while the nonsurgery eye had deteriorated to hand motion vision. This patient also showed a 22.72% increase in light sensitivity at five years compared to microperimetry results at two years; the other patients showed no improved sensitivity. Although no match was found between donors and recipients, no rejection of the implanted tissue was observed clinically. CONCLUSIONS: Seven (70%) of 10 patients showed improved VA. This outcome provides clinical evidence of the safety and beneficial effect of retinal implants and corroborates results in animal models of retinal degeneration.