Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
NPJ Vaccines ; 7(1): 88, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915094

RESUMO

mRNA vaccines can be developed and produced quickly, making them prime candidates for immediate outbreak responses. Furthermore, clinical trials have demonstrated rapid protection following mRNA vaccination. Thus, we sought to investigate how quickly mRNA vaccines elicit antibody responses compared to other vaccine modalities. We first compared the immune kinetics of mRNA and DNA vaccines expressing SARS-CoV-2 spike in mice. We observed rapid induction of antigen-specific binding and neutralizing antibodies by day 5 following mRNA (4 µg/mouse), but not DNA (50 µg/mouse), immunization. Comparing innate responses hours post immunization, the mRNA vaccine induced increased levels of IL-5, IL-6, and MCP-1 cytokines which maybe promoting humoral responses downstream. We then evaluated the immune kinetics of an HIV-1 mRNA vaccine in comparison to DNA, protein, and rhesus adenovirus 52 (RhAd52) vaccines of the same HIV-1 envelope antigen in mice. Again, induction of envelope-specific antibodies was observed by day 5 following mRNA vaccination, whereas antibodies were detected by day 7-14 following DNA, protein, and RhAd52 vaccination. Thus, eliciting rapid humoral immunity may be a unique and advantageous property of mRNA vaccines for controlling infectious disease outbreaks.

2.
bioRxiv ; 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34751269

RESUMO

mRNA vaccines can be developed and produced quickly, making them attractive for immediate outbreak responses. Furthermore, clinical trials have demonstrated rapid protection following mRNA vaccination. We sought to investigate how quickly mRNA vaccines elicit antibody responses compared to other vaccine modalities. We first examined immune kinetics of mRNA and DNA vaccines expressing SARS-CoV-2 spike in mice. We observed rapid induction of antigen-specific binding and neutralizing antibodies by day 5 following mRNA, but not DNA, immunization. The mRNA vaccine also induced increased levels of IL-5, IL-6 and MCP-1. We then evaluated immune kinetics of an HIV-1 mRNA vaccine in comparison to DNA, protein, and rhesus adenovirus 52 (RhAd52) vaccines with the same HIV-1 envelope antigen in mice. Induction of envelope-specific antibodies was observed by day 5 following mRNA vaccination, whereas antibodies were detected by day 7-14 following DNA, protein, and RhAd52 vaccination. Eliciting rapid humoral immunity may be an advantageous property of mRNA vaccines for controlling infectious disease outbreaks. IMPORTANCE: mRNA vaccines can be developed and produced in record time. Here we demonstrate induction of rapid antibody responses by mRNA vaccines encoding two different viral antigens by day 5 following immunization in mice. The rapid immune kinetics of mRNA vaccines can be an advantageous property that makes them well suited for rapid control of infectious disease outbreaks.

3.
Mol Ther ; 27(4): 773-784, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30885573

RESUMO

First attempts to use exogenous mRNA for protein expression in vivo were made more than 25 years ago. However, widespread appreciation of in vitro transcribed mRNA as a powerful technology for supplying therapeutic proteins to the body has evolved only during the past few years. Various approaches to turning mRNA into a potent therapeutic have been developed. All of them share utilization of specifically designed, rather than endogenous, sequences and thorough purification protocols. Apart from this, there are two fundamental philosophies, one promoting the use of chemically modified nucleotides, the other advocating restriction to unmodified building blocks. Meanwhile, both strategies have received broad support by successful mRNA-based protein treatments in animal models. For such in vivo use, specifically optimized mRNA had to be combined with potent formulations to enable efficient in vivo delivery. The present review analyzes the applicability of mRNA technology to antibody therapy in all main fields: antitoxins, infectious diseases, and oncology.


Assuntos
Anticorpos Monoclonais/genética , Sistemas de Liberação de Medicamentos/métodos , Imunização Passiva/métodos , RNA Mensageiro/administração & dosagem , RNA Mensageiro/uso terapêutico , Animais , Doenças Transmissíveis/terapia , Composição de Medicamentos/métodos , Humanos , Lipídeos/química , Nanopartículas/química , Neoplasias/terapia , Toxinas Biológicas/imunologia
4.
Front Immunol ; 9: 1963, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30283434

RESUMO

Ever since the development of the first vaccine more than 200 years ago, vaccinations have greatly decreased the burden of infectious diseases worldwide, famously leading to the eradication of small pox and allowing the restriction of diseases such as polio, tetanus, diphtheria, and measles. A multitude of research efforts focuses on the improvement of established and the discovery of new vaccines such as the HPV (human papilloma virus) vaccine in 2006. However, radical changes in the density, age distribution and traveling habits of the population worldwide as well as the changing climate favor the emergence of old and new pathogens that bear the risk of becoming pandemic threats. In recent years, the rapid spread of severe infections such as HIV, SARS, Ebola, and Zika have highlighted the dire need for global preparedness for pandemics, which necessitates the extremely rapid development and comprehensive distribution of vaccines against potentially previously unknown pathogens. What is more, the emergence of antibiotic resistant bacteria calls for new approaches to prevent infections. Given these changes, established methods for the identification of new vaccine candidates are no longer sufficient to ensure global protection. Hence, new vaccine technologies able to achieve rapid development as well as large scale production are of pivotal importance. This review will discuss viral vector and nucleic acid-based vaccines (DNA and mRNA vaccines) as new approaches that might be able to tackle these challenges to global health.


Assuntos
Controle de Doenças Transmissíveis/métodos , Doenças Transmissíveis/terapia , Surtos de Doenças/prevenção & controle , Vacinação/métodos , Vacinas/imunologia , Animais , Controle de Doenças Transmissíveis/tendências , Doenças Transmissíveis/epidemiologia , Doenças Transmissíveis/imunologia , Saúde Global , Humanos , Vacinação/tendências , Vacinas/administração & dosagem
5.
PLoS Negl Trop Dis ; 11(12): e0006108, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29216187

RESUMO

Although effective rabies virus vaccines have been existing for decades, each year, rabies virus infections still cause around 50.000 fatalities worldwide. Most of these cases occur in developing countries, where these vaccines are not available. The reasons for this are the prohibitive high costs of cell culture or egg grown rabies virus vaccines and the lack of a functional cold chain in many regions in which rabies virus is endemic. Here, we describe the excellent temperature resistance of a non-replicating mRNA based rabies virus vaccine encoding the rabies virus glycoprotein (RABV-G). Prolonged storage of the vaccine from -80°C to up to +70°C for several months did not impact the protective capacity of the mRNA vaccine. Efficacy after storage was demonstrated by the induction of rabies specific virus neutralizing antibodies and protection in mice against lethal rabies infection. Moreover, storing the vaccine at oscillating temperatures between +4° and +56°C for 20 cycles in order to simulate interruptions of the cold chain during vaccine transport, did not affect the vaccine's immunogenicity and protective characteristics, indicating that maintenance of a cold chain is not essential for this vaccine.


Assuntos
Antígenos Virais/genética , Glicoproteínas/genética , Imunogenicidade da Vacina , RNA Mensageiro , Vacina Antirrábica/imunologia , Vírus da Raiva/genética , Raiva/prevenção & controle , Potência de Vacina , Proteínas do Envelope Viral/genética , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Camundongos , Vacina Antirrábica/administração & dosagem , Vacina Antirrábica/genética , Vírus da Raiva/imunologia , Temperatura , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
6.
Hum Vaccin Immunother ; 9(10): 2263-76, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23921513

RESUMO

Nucleotide based vaccines represent an enticing, novel approach to vaccination. We have developed a novel immunization technology, RNActive(®) vaccines, that have two important characteristics: mRNA molecules are used whose protein expression capacity has been enhanced by 4 to 5 orders of magnitude by modifications of the nucleotide sequence with the naturally occurring nucleotides A (adenosine), G (guanosine), C (cytosine), U (uridine) that do not affect the primary amino acid sequence. Second, they are complexed with protamine and thus activate the immune system by involvement of toll-like receptor (TLR) 7. Essentially, this bestows self-adjuvant activity on RNActive(®) vaccines. RNActive(®) vaccines induce strong, balanced immune responses comprising humoral and cellular responses, effector and memory responses as well as activation of important subpopulations of immune cells, such as Th1 and Th2 cells. Pre-germinal center and germinal center B cells were detected in human patients upon vaccination. RNActive(®) vaccines successfully protect against lethal challenges with a variety of different influenza strains in preclinical models. Anti-tumor activity was observed preclinically under therapeutic as well as prophylactic conditions. Initial clinical experiences suggest that the preclinical immunogenicity of RNActive(®) could be successfully translated to humans.


Assuntos
Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/imunologia , RNA/administração & dosagem , RNA/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Humanos , Receptor 7 Toll-Like/imunologia , Vacinação/métodos
7.
J Virol ; 85(9): 4538-46, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21345946

RESUMO

The prion agent is the infectious particle causing spongiform encephalopathies in animals and humans and is thought to consist of an altered conformation (PrP(Sc)) of the normal and ubiquitous prion protein PrP(C). The interaction of the prion agent with the immune system, particularly the humoral immune response, has remained unresolved. Here we investigated the immunogenicity of full-length native and infectious prions, as well as the specific biological effects of the resulting monoclonal antibodies (MAbs) on the binding and clearance of prions in cell culture and in in vivo therapy. Immunization of prion knockout (Prnp(0/0)) mice with phosphotungstic acid-purified mouse prions resulted in PrP-specific monoclonal antibodies with binding specificities selective for PrP(Sc) or for both PrP(C) and PrP(Sc). PrP(Sc)-specific MAb W261, of the IgG1 isotype, reacted with prions from mice, sheep with scrapie, deer with chronic wasting disease (CWD), and humans with sporadic and variant Creutzfeldt-Jakob disease (CJD) in assays including a capture enzyme-linked immunosorbent assay (ELISA) system. This PrP(Sc)-specific antibody was unable to clear prions from mouse neuroblastoma cells (ScN2a) permanently infected with scrapie, whereas the high-affinity MAb W226, recognizing both isoforms, PrP(Sc) and PrP(C), did clear prions from ScN2a cells, as determined by a bioassay. However, an attempt to treat intraperitoneally prion infected mice with full-length W226 or with a recombinant variable-chain fragment (scFv) from W226 could only slightly delay the incubation time. We conclude that (i) native, full-length PrP(Sc) elicits a prion-specific antibody response in PrP knockout mice, (ii) a PrP(Sc)-specific antibody had no prion-clearing effect, and (iii) even a high-affinity MAb that clears prions in vitro (W226) may not necessarily protect against prion infection, contrary to previous reports using different antibodies.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Doenças Priônicas/prevenção & controle , Príons/imunologia , Príons/isolamento & purificação , Animais , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/metabolismo , Linhagem Celular , Período de Incubação de Doenças Infecciosas , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteínas Priônicas , Ligação Proteica , Fatores de Tempo
8.
Mol Immunol ; 46(4): 532-40, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18973947

RESUMO

The prion protein, PrP, exists in several stable conformations, with the presence of one conformation, PrP(Sc), associated with transmissible neurodegenerative diseases. Targeting PrP by high-affinity ligands has been proven to be an effective way of preventing peripheral prion infections. Here, we have generated bacterially expressed single chain fragments of the variable domains (scFv) of a monoclonal antibody in Escherichia coli, originally raised against purified PrP(Sc) that recognizes both PrP(C) and PrP(Sc). This scFv fragment had a dissociation constant (K(D)) with recombinant PrP of 2 nM and cleared prions in ScN2a cells at 4 nM, as demonstrated by a mouse prion bioassay. A peptide corresponding to the complementarity determining region 3 of the heavy chain (CDR3H) selectively bound PrP(Sc) but had lost antiprion activity. However, synthesis and application of an improved peptide mimicking side chain topology of CDR3H while exhibiting increased protease resistance, a retro-inverso d-peptide of CDR3H, still bound PrP(Sc) and reinstated antiprion activity. We conclude that (1) scFvW226 is so far the smallest polypeptide with bioassay confirmed antiprion activity, and (2) differential conformation specificity and bioactivity can be regulated by orchestrating the participation of different CDRs.


Assuntos
Regiões Determinantes de Complementaridade/imunologia , Peptídeos/imunologia , Proteínas PrPC/imunologia , Proteínas PrPSc/imunologia , Sequência de Aminoácidos , Animais , Afinidade de Anticorpos/imunologia , Linhagem Celular , Regiões Determinantes de Complementaridade/metabolismo , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/metabolismo , Proteínas PrPC/metabolismo , Proteínas PrPSc/metabolismo , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA