Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 365(3): 783-98, 2007 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-17123542

RESUMO

The primary metabolic route for D-xylose, the second most abundant sugar in nature, is via the pentose phosphate pathway after a two-step or three-step conversion to xylulose-5-phosphate. Xylulose kinase (XK; EC 2.7.1.17) phosphorylates D-xylulose, the last step in this conversion. The apo and D-xylulose-bound crystal structures of Escherichia coli XK have been determined and show a dimer composed of two domains separated by an open cleft. XK dimerization was observed directly by a cryo-EM reconstruction at 36 A resolution. Kinetic studies reveal that XK has a weak substrate-independent MgATP-hydrolyzing activity, and phosphorylates several sugars and polyols with low catalytic efficiency. Binding of pentulose and MgATP to form the reactive ternary complex is strongly synergistic. Although the steady-state kinetic mechanism of XK is formally random, a path is preferred in which D-xylulose binds before MgATP. Modelling of MgATP binding to XK and the accompanying conformational change suggests that sugar binding is accompanied by a dramatic hinge-bending movement that enhances interactions with MgATP, explaining the observed synergism. A catalytic mechanism is proposed and supported by relevant site-directed mutants.


Assuntos
Escherichia coli/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Adenosina Trifosfatases/química , Sequência de Aminoácidos , Carboidratos/química , Catálise , Sequência Conservada , Microscopia Crioeletrônica , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Glicerol Quinase/química , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/ultraestrutura , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Alinhamento de Sequência , Especificidade por Substrato
2.
Biochem J ; 385(Pt 1): 75-83, 2005 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-15320875

RESUMO

CtXR (xylose reductase from the yeast Candida tenuis; AKR2B5) can utilize NADPH or NADH as co-substrate for the reduction of D-xylose into xylitol, NADPH being preferred approx. 33-fold. X-ray structures of CtXR bound to NADP+ and NAD+ have revealed two different protein conformations capable of accommodating the presence or absence of the coenzyme 2'-phosphate group. Here we have used site-directed mutagenesis to replace interactions specific to the enzyme-NADP+ complex with the aim of engineering the co-substrate-dependent conformational switch towards improved NADH selectivity. Purified single-site mutants K274R (Lys274-->Arg), K274M, K274G, S275A, N276D, R280H and the double mutant K274R-N276D were characterized by steady-state kinetic analysis of enzymic D-xylose reductions with NADH and NADPH at 25 degrees C (pH 7.0). The results reveal between 2- and 193-fold increases in NADH versus NADPH selectivity in the mutants, compared with the wild-type, with only modest alterations of the original NADH-linked xylose specificity and catalytic-centre activity. Catalytic reaction profile analysis demonstrated that all mutations produced parallel effects of similar magnitude on ground-state binding of coenzyme and transition state stabilization. The crystal structure of the double mutant showing the best improvement of coenzyme selectivity versus wild-type and exhibiting a 5-fold preference for NADH over NADPH was determined in a binary complex with NAD+ at 2.2 A resolution.


Assuntos
Aldeído Redutase/química , Aldeído Redutase/metabolismo , Candida/enzimologia , Mutagênese Sítio-Dirigida/genética , NADP/metabolismo , NAD/metabolismo , Adenosina/metabolismo , Aldeído Redutase/genética , Aldeído Redutase/isolamento & purificação , Candida/genética , Catálise , Cristalografia por Raios X , Cinética , Modelos Moleculares , Mutação/genética , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Ribose/metabolismo , Especificidade por Substrato , Termodinâmica , Xilose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA