Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Diabetologia ; 60(2): 314-323, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27807598

RESUMO

AIMS/HYPOTHESIS: Salt-inducible kinases (SIKs) are related to the metabolic regulator AMP-activated protein kinase (AMPK). SIK2 is abundant in adipose tissue. The aims of this study were to investigate the expression of SIKs in relation to human obesity and insulin resistance, and to evaluate whether changes in the expression of SIKs might play a causal role in the development of disturbed glucose uptake in human adipocytes. METHODS: SIK mRNA and protein was determined in human adipose tissue or adipocytes, and correlated to clinical variables. SIK2 and SIK3 expression and phosphorylation were analysed in adipocytes treated with TNF-α. Glucose uptake, GLUT protein levels and localisation, phosphorylation of protein kinase B (PKB/Akt) and the SIK substrate histone deacetylase 4 (HDAC4) were analysed after the SIKs had been silenced using small interfering RNA (siRNA) or inhibited using a pan-SIK-inhibitor (HG-9-91-01). RESULTS: We demonstrate that SIK2 and SIK3 mRNA are downregulated in adipose tissue from obese individuals and that the expression is regulated by weight change. SIK2 is also negatively associated with in vivo insulin resistance (HOMA-IR), independently of BMI and age. Moreover, SIK2 protein levels and specific kinase activity display a negative correlation to BMI in human adipocytes. Furthermore, SIK2 and SIK3 are downregulated by TNF-α in adipocytes. Silencing or inhibiting SIK1-3 in adipocytes results in reduced phosphorylation of HDAC4 and PKB/Akt, less GLUT4 at the plasma membrane, and lower basal and insulin-stimulated glucose uptake in adipocytes. CONCLUSION/INTERPRETATION: This is the first study to describe the expression and function of SIKs in human adipocytes. Our data suggest that SIKs might be protective in the development of obesity-induced insulin resistance, with implications for future treatment strategies.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Obesidade/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adulto , Idoso , Animais , Western Blotting , Feminino , Humanos , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Masculino , Camundongos , Pessoa de Meia-Idade , Fosforilação/efeitos dos fármacos , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fator de Necrose Tumoral alfa/farmacologia
2.
Diabetologia ; 58(9): 2115-23, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26115698

RESUMO

AIMS/HYPOTHESIS: Dysregulated expression of metabolic and inflammatory genes is a prominent consequence of obesity causing insulin resistance and type 2 diabetes. Finding causative factors is essential to understanding progression of these pathologies and discovering new therapeutic targets. The transcription factor V-maf musculoaponeurotic fibrosarcoma oncogene homologue B (MAFB) is highly expressed in human white adipose tissue (WAT). However, its role in the regulation of WAT function is elusive. We aimed to characterise MAFB expression and function in human WAT in the context of obesity and insulin resistance. METHODS: MAFB mRNA expression was evaluated in human WAT from seven cohorts with large inter-individual variation in BMI and metabolic features. Insulin-induced adipocyte lipogenesis and lipolysis were measured and correlated with MAFB expression. MAFB regulation during adipogenesis and the effects of MAFB suppression in human adipocytes was investigated. MAFB regulation by TNF-α was examined in human primary adipocytes and THP-1 monocytes/macrophages. RESULTS: MAFB expression in human adipocytes is upregulated during adipogenesis, increases with BMI in WAT, correlates with adverse metabolic features and is decreased after weight loss. MAFB downregulation decreases proinflammatory gene expression in adipocytes and interferes with TNF-α effects. Interestingly, MAFB is differentially regulated by TNF-α in adipocytes (suppressed) and THP-1 cells (upregulated). Further, MAFB is primarily expressed in WAT macrophages/monocytes and its expression correlates with macrophage and inflammatory markers. CONCLUSIONS/INTERPRETATION: Our findings indicate that MAFB is a regulator and a marker of adipose tissue inflammation, a process that subsequently causes insulin resistance.


Assuntos
Tecido Adiposo Branco/metabolismo , Regulação da Expressão Gênica , Inflamação/metabolismo , Fator de Transcrição MafB/metabolismo , Adipócitos/citologia , Tecido Adiposo Branco/patologia , Índice de Massa Corporal , Diferenciação Celular , Estudos de Coortes , Humanos , Resistência à Insulina , Lipogênese , Lipólise , Macrófagos/citologia , Células-Tronco Mesenquimais/citologia , Monócitos/citologia , Obesidade/metabolismo , Análise de Regressão , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA