Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37686182

RESUMO

Thymalin is an immunomodulatory drug containing a polypeptide extract of thymus that has demonstrated efficacy in the therapy of acute respiratory distress syndrome and chronic obstructive pulmonary disease, as well as in complex therapy related to severe COVID-19 in middle-aged and elderly patients.. KE and EW dipeptides are active substances of Thymalin. There is evidence that KE stimulates cellular immunity and nonspecific resistance in organisms, exerting an activating effect on macrophages, blood lymphocytes, thymocytes, and neutrophils, while EW reduces angiotensin-induced vasoconstriction and preserves endothelium-dependent vascular relaxation by inhibiting ACE2, the target protein of SARS-CoV-2. However, the mechanism of the immunomodulatory action of Thymalin, KE, and EW during COVID-19 remains unclear. To identify the potential mechanism of action underlying the immunomodulatory activity of Thymalin and its active components, EW and KE dipeptides, we assessed inflammatory response in the context of COVID-19. Interactions between EW and KE dipeptides and double-stranded DNA (dsDNA) were investigated by molecular modeling and docking using ICM-Pro. Analysis of the possible effect of EW and KE dipeptides on gene expression and protein synthesis involved in the pathogenesis of COVID-19 was conducted through the use of bioinformatics methods, including a search for promoter sequences in the Eukaryotic Promoter Database, the determination of genes associated with the development of COVID-19 using the PathCards database of human biological pathways (pathway unification database), identification of the relationship between proteins through cluster analysis in the STRING database ('Search Tool for Retrieval of Interacting Genes/Proteins'), and assessment of the functional enrichment of protein-protein interaction (PPI) using the terms of gene ontology (GO) and the Markov cluster algorithm (MCL). After that, in vitro studying of a lipopolysaccharide (LPS)-induced model of inflammation using human peripheral blood mononuclear cells was performed. ELISA was applied to assess the level of cytokines (IL-1ß, IL-6, TNFα) in the supernatant of cells with or without the impact of EW and KE peptides. Blood samples were obtained from four donors; for each cytokine, ELISA was performed 2-4 times, with two parallel experimental or control samples for each experiment (experiments to assess the effects of peptides on LPS-stimulated cells were repeated four times, while additional experiments with unstimulated cells were performed two times). Using molecular docking, GGAG was found to be the best dsDNA sequence in the classical B-form for binding the EW dipeptide, while GCGC is the preferred dsDNA sequence in the curved nucleosomal form for the KE dipeptide. Cluster analysis revealed that potential target genes for the EW and KE peptides encode the AKT1 and AKT2 proteins involved in the development of the cytokine storm. The specific targets for the EW peptide are the ACE2 and CYSLTR1 genes, and specific target for the KE peptide is the CHUK gene. Protein products of the ACE2, CYSLTR1, and CHUK genes are functionally associated with IL-1ß, IL-6, TNF-α, IL-4, and IL-10 cytokines. An in vitro model of an inflammatory reaction demonstrated that Thymalin and EW and KE dipeptides reduced the synthesis of IL-1ß, IL-6, and TNF-α cytokines in human peripheral blood mononuclear cells by 1.4-6.0 times. The immunomodulatory effect of Thymalin under the inflammatory response conditions in COVID-19 is based on the potential ability of its active components, EW and KE dipeptides, to regulate protein synthesis involved in the development of the cytokine storm.


Assuntos
COVID-19 , Dipeptídeos , Idoso , Pessoa de Meia-Idade , Humanos , Fator de Necrose Tumoral alfa , Enzima de Conversão de Angiotensina 2/genética , Síndrome da Liberação de Citocina , Interleucina-6 , Leucócitos Mononucleares , Lipopolissacarídeos , Simulação de Acoplamento Molecular , SARS-CoV-2 , Citocinas/genética , Biossíntese de Proteínas
2.
Biomolecules ; 13(3)2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36979488

RESUMO

The aim of this work is to verify the possibility of transport of 26 biologically active ultrashort peptides (USPs) into cells via LAT and PEPT family transporters. Molecular modeling and computer-assisted docking of peptide ligands revealed that the size and structure of ligand-binding sites of the amino acid transporters LAT1, LAT2, and of the peptide transporter PEPT1 are sufficient for the transport of the 26 biologically active di-, tri-, and tetra-peptides. Comparative analysis of the binding of all possible di- and tri-peptides (8400 compounds) at the binding sites of the LAT and PEPT family transporters has been carried out. The 26 biologically active USPs systematically showed higher binding scores to LAT1, LAT2, and PEPT1, as compared with di- and tri-peptides, for which no biological activity has been established. This indicates an important possible role which LAT and PEPT family transporters may play in a variety of biological activities of the 26 biologically active peptides under investigation in this study. Most of the 26 studied USPs were found to bind to the LAT1, LAT2, and PEPT1 transporters more efficiently than the known substrates or inhibitors of these transporters. Peptides ED, DS, DR, EDR, EDG, AEDR, AEDL, KEDP, and KEDG, and peptoids DS7 and KE17 with negatively charged Asp- or Glu- amino acid residues at the N-terminus and neutral or positively charged residues at the C-terminus of the peptide are found to be the most effective ligands of the transporters under investigation. It can be assumed that the antitumor effect of the KE, EW, EDG, and AEDG peptides could be associated with their ability to inhibit the LAT1, LAT2, and PEPT1 amino acid transporters. The data obtained lead to new prospects for further study of the mechanisms of transport of USP-based drugs into the cell and design of new antitumor drugs.


Assuntos
Aminoácidos , Peptídeos , Estudos de Viabilidade , Aminoácidos/metabolismo , Peptídeos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transporte Biológico
3.
Sci Adv ; 6(31): eaay9131, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32789167

RESUMO

Despite considerable efforts, mTOR inhibitors have produced limited success in the clinic. To define the vulnerabilities of mTORC1-addicted cancer cells and to find previously unknown therapeutic targets, we investigated the mechanism of piperlongumine, a small molecule identified in a chemical library screen to specifically target cancer cells with a hyperactive mTORC1 phenotype. Sensitivity to piperlongumine was dependent on its ability to suppress RUVBL1/2-TTT, a complex involved in chromatin remodeling and DNA repair. Cancer cells with high mTORC1 activity are subjected to higher levels of DNA damage stress via c-Myc and displayed an increased dependency on RUVBL1/2 for survival and counteracting genotoxic stress. Examination of clinical cancer tissues also demonstrated that high mTORC1 activity was accompanied by high RUVBL2 expression. Our findings reveal a previously unknown role for RUVBL1/2 in cell survival, where it acts as a functional chaperone to mitigate stress levels induced in the mTORC1-Myc-DNA damage axis.


Assuntos
DNA Helicases , Neoplasias , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Mutações Sintéticas Letais
4.
Cell Mol Life Sci ; 77(13): 2579-2603, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31562565

RESUMO

Ebola virus (EBOV) causes severe human disease with a high case fatality rate. The balance of evidence implies that the virus circulates in bats. The molecular basis for host-viral interactions, including the role for phosphorylation during infections, is largely undescribed. To address this, and to better understand the biology of EBOV, the phosphorylation of EBOV proteins was analyzed in virions purified from infected monkey Vero-E6 cells and bat EpoNi/22.1 cells using high-resolution mass spectrometry. All EBOV structural proteins were detected with high coverage, along with phosphopeptides. Phosphorylation sites were identified in all viral structural proteins. Comparison of EBOV protein phosphorylation in monkey and bat cells showed only partial overlap of phosphorylation sites, with shared sites found in NP, VP35, and VP24 proteins, and no common sites in the other proteins. Three-dimensional structural models were built for NP, VP35, VP40, GP, VP30 and VP24 proteins using available crystal structures or by de novo structure prediction to elucidate the potential role of the phosphorylation sites. Phosphorylation of one of the identified sites in VP35, Thr-210, was demonstrated to govern the transcriptional activity of the EBOV polymerase complex. Thr-210 phosphorylation was also shown to be important for VP35 interaction with NP. This is the first study to compare phosphorylation of all EBOV virion proteins produced in primate versus bat cells, and to demonstrate the role of VP35 phosphorylation in the viral life cycle. The results uncover a novel mechanism of EBOV transcription and identify novel targets for antiviral drug development.


Assuntos
Ebolavirus/genética , Ebolavirus/metabolismo , Regulação Viral da Expressão Gênica , Nucleoproteínas/metabolismo , Transcrição Gênica , Proteínas do Core Viral/metabolismo , Animais , Quirópteros , Chlorocebus aethiops , Células HEK293 , Humanos , Proteínas do Nucleocapsídeo , Nucleoproteínas/química , Fosforilação , Proteômica , Ribonucleoproteínas/metabolismo , Células Vero , Proteínas do Core Viral/química , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Vírion/genética , Vírion/metabolismo
5.
Nucleic Acids Res ; 47(20): 10553-10563, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31598715

RESUMO

A large variety of short biologically active peptides possesses antioxidant, antibacterial, antitumour, anti-ageing and anti-inflammatory activity, involved in the regulation of neuro-immuno-endocrine system functions, cell apoptosis, proliferation and differentiation. Therefore, the mechanisms of their biological activity are attracting increasing attention not only in modern molecular biology, biochemistry and biophysics, but also in pharmacology and medicine. In this work, we systematically analysed the ability of dipeptides (all possible combinations of the 20 standard amino acids) to bind all possible combinations of tetra-nucleotides in the central part of dsDNA in the classic B-form using molecular docking and molecular dynamics. The vast majority of the dipeptides were found to be unable to bind dsDNA. However, we were able to identify 57 low-energy dipeptide complexes with peptide-dsDNA possessing high selectivity for DNA binding. The analysis of the dsDNA complexes with dipeptides with free and blocked N- and C-terminus showed that selective peptide binding to dsDNA can increase dramatically with the peptide length.


Assuntos
DNA/química , Dipeptídeos/química , Simulação de Acoplamento Molecular , Motivos de Nucleotídeos , Análise de Sequência de DNA/métodos , DNA/metabolismo , Dipeptídeos/metabolismo , Ligação Proteica
6.
Nucleic Acids Res ; 45(16): 9788-9796, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28934502

RESUMO

The RecX protein, a very active natural RecA protein inhibitor, can completely disassemble RecA filaments at nanomolar concentrations that are two to three orders of magnitude lower than that of RecA protein. Based on the structure of RecX protein complex with the presynaptic RecA filament, we designed a short first in class α-helical peptide that both inhibits RecA protein activities in vitro and blocks the bacterial SOS-response in vivo. The peptide was designed using SEQOPT, a novel method for global sequence optimization of protein α-helices. SEQOPT produces artificial peptide sequences containing only 20 natural amino acids with the maximum possible conformational stability at a given pH, ionic strength, temperature, peptide solubility. It also accounts for restrictions due to known amino acid residues involved in stabilization of protein complexes under consideration. The results indicate that a few key intermolecular interactions inside the RecA protein presynaptic complex are enough to reproduce the main features of the RecX protein mechanism of action. Since the SOS-response provides a major mechanism of bacterial adaptation to antibiotics, these results open new ways for the development of antibiotic co-therapy that would not cause bacterial resistance.


Assuntos
Peptídeos/química , Peptídeos/farmacologia , Recombinases Rec A/antagonistas & inibidores , Resposta SOS em Genética/efeitos dos fármacos , Dicroísmo Circular , DNA/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Escherichia coli/efeitos da radiação , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Conformação Proteica , Estabilidade Proteica , Recombinases Rec A/química , Recombinases Rec A/metabolismo , Resposta SOS em Genética/efeitos da radiação , Raios Ultravioleta
7.
Methods Mol Biol ; 1216: 1-14, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25213408

RESUMO

Recent studies have elucidated key principles governing folding and stability of α-helices in short peptides and globular proteins. In this chapter we review briefly those principles and describe a protocol for the de novo design of highly stable α-helixes using the SEQOPT algorithm. This algorithm is based on AGADIR, the statistical mechanical theory for helix-coil transitions in monomeric peptides, and the tunneling algorithm for global sequence optimization.


Assuntos
Peptídeos/química , Algoritmos , Dobramento de Proteína , Estabilidade Proteica , Estrutura Secundária de Proteína
8.
Structure ; 22(4): 549-59, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24613487

RESUMO

Eukaryotic TIP49a (Pontin) and TIP49b (Reptin) AAA+ ATPases play essential roles in key cellular processes. How their weak ATPase activity contributes to their important functions remains largely unknown and difficult to analyze because of the divergent properties of TIP49a and TIP49b proteins and of their homo- and hetero-oligomeric assemblies. To circumvent these complexities, we have analyzed the single ancient TIP49 ortholog found in the archaeon Methanopyrus kandleri (mkTIP49). All-atom homology modeling and molecular dynamics simulations validated by biochemical assays reveal highly conserved organizational principles and identify key residues for ATP hydrolysis. An unanticipated crosstalk between Walker B and Sensor I motifs impacts the dynamics of water molecules and highlights a critical role of trans-acting aspartates in the lytic water activation step that is essential for the associative mechanism of ATP hydrolysis.


Assuntos
Adenosina Trifosfatases/química , Trifosfato de Adenosina/química , Proteínas Arqueais/química , Euryarchaeota/química , Água/química , Adenosina Trifosfatases/genética , Proteínas Arqueais/genética , Ácido Aspártico/química , Evolução Biológica , Sequência Conservada , Escherichia coli/genética , Escherichia coli/metabolismo , Euryarchaeota/enzimologia , Expressão Gênica , Hidrólise , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
9.
Structure ; 20(8): 1321-31, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22748767

RESUMO

The TIP49a and TIP49b proteins belong to the family of AAA+ ATPases and play essential roles in vital processes such as transcription, DNA repair, snoRNP biogenesis, and chromatin remodeling. We report the crystal structure of a TIP49b hexamer and the comparative analysis of large-scale conformational flexibility of TIP49a, TIP49b, and TIP49a/TIP49b complexes using molecular modeling and molecular dynamics simulations in a water environment. Our results establish key principles of domain mobility that affect protein conformation and biochemical properties, including a mechanistic basis for the downregulation of ATPase activity upon protein hexamerization. These approaches, applied to the lik-TIP49b mutant reported to possess enhanced DNA-independent ATPase activity, help explain how a three-amino acid insertion remotely affects the structure and conformational dynamics of the ATP binding and hydrolysis pocket while uncoupling ATP hydrolysis from DNA binding. This might be similar to the effects of conformations adopted by TIP49 heterohexamers.


Assuntos
Proteínas de Transporte/química , DNA Helicases/química , ATPases Associadas a Diversas Atividades Celulares , Trifosfato de Adenosina/química , Domínio Catalítico , Cristalografia por Raios X , Estabilidade Enzimática , Humanos , Ligação de Hidrogênio , Hidrólise , Simulação de Dinâmica Molecular , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína
10.
J Pept Sci ; 15(5): 359-65, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19222027

RESUMO

The rational design of peptide and protein helices is not only of practical importance for protein engineering but also is a useful approach in attempts to improve our understanding of protein folding. Recent modifications of theoretical models of helix-coil transitions allow accurate predictions of the helix stability of monomeric peptides in water and provide new possibilities for protein design. We report here a new method for the design of alpha-helices in peptides and proteins using AGADIR, the statistical mechanical theory for helix-coil transitions in monomeric peptides and the tunneling algorithm of global optimization of multidimensional functions for optimization of amino acid sequences. CD measurements of helical content of peptides with optimized sequences indicate that the helical potential of protein amino acids is high enough to allow formation of stable alpha-helices in peptides as short as of 10 residues in length. The results show the maximum achievable helix content (HC) of short peptides with fully optimized sequences at 5 degrees C is expected to be approximately 70-75%. Under certain conditions the method can be a powerful practical tool for protein engineering. Unlike traditional approaches that are often used to increase protein stability by adding a few favorable interactions to the protein structure, this method deals with all possible sequences of protein helices and selects the best one from them.


Assuntos
Algoritmos , Modelos Teóricos , Peptídeos/química , Proteínas/química , Sequência de Aminoácidos , Dados de Sequência Molecular , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA