Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
NPJ Syst Biol Appl ; 9(1): 37, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37524705

RESUMO

Lung adenocarcinoma (LUAD) is associated with a low survival rate at advanced stages. Although the development of targeted therapies has improved outcomes in LUAD patients with identified and specific genetic alterations, such as activating mutations on the epidermal growth factor receptor gene (EGFR), the emergence of tumor resistance eventually occurs in all patients and this is driving the development of new therapies. In this paper, we present the In Silico EGFR-mutant LUAD (ISELA) model that links LUAD patients' individual characteristics, including tumor genetic heterogeneity, to tumor size evolution and tumor progression over time under first generation EGFR tyrosine kinase inhibitor gefitinib. This translational mechanistic model gathers extensive knowledge on LUAD and was calibrated on multiple scales, including in vitro, human tumor xenograft mouse and human, reproducing more than 90% of the experimental data identified. Moreover, with 98.5% coverage and 99.4% negative logrank tests, the model accurately reproduced the time to progression from the Lux-Lung 7 clinical trial, which was unused in calibration, thus supporting the model high predictive value. This knowledge-based mechanistic model could be a valuable tool in the development of new therapies targeting EGFR-mutant LUAD as a foundation for the generation of synthetic control arms.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Gefitinibe/farmacologia , Gefitinibe/uso terapêutico , Genes erbB-1 , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Inibidores de Proteínas Quinases/farmacologia , Receptores ErbB/genética , Receptores ErbB/uso terapêutico , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Progressão da Doença
2.
Acta Biotheor ; 70(3): 19, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35796890

RESUMO

Mechanistic models are built using knowledge as the primary information source, with well-established biological and physical laws determining the causal relationships within the model. Once the causal structure of the model is determined, parameters must be defined in order to accurately reproduce relevant data. Determining parameters and their values is particularly challenging in the case of models of pathophysiology, for which data for calibration is sparse. Multiple data sources might be required, and data may not be in a uniform or desirable format. We describe a calibration strategy to address the challenges of scarcity and heterogeneity of calibration data. Our strategy focuses on parameters whose initial values cannot be easily derived from the literature, and our goal is to determine the values of these parameters via calibration with constraints set by relevant data. When combined with a covariance matrix adaptation evolution strategy (CMA-ES), this step-by-step approach can be applied to a wide range of biological models. We describe a stepwise, integrative and iterative approach to multiscale mechanistic model calibration, and provide an example of calibrating a pathophysiological lung adenocarcinoma model. Using the approach described here we illustrate the successful calibration of a complex knowledge-based mechanistic model using only the limited heterogeneous datasets publicly available in the literature.


Assuntos
Adenocarcinoma de Pulmão , Modelos Biológicos , Animais , Calibragem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA