Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Extracell Biol ; 3(1): e139, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38938682

RESUMO

The receptor tyrosine kinase (RTK) KIT and its ligand stem cell factor (SCF) are essential for human mast cell (huMC) survival and proliferation. HuMCs expressing oncogenic KIT variants secrete large numbers of extracellular vesicles (EVs). The role KIT plays in regulating EV secretion has not been examined. Here, we investigated the effects of stimulation or inhibition of KIT activity on the secretion of small EVs (sEVs). In huMCs expressing constitutively active KIT, the quantity and quality of secreted sEVs positively correlated with the activity status of KIT. SCF-mediated stimulation of KIT in huMCs or murine MCs, or of transiently expressed KIT in HeLa cells, enhanced the release of sEVs expressing exosome markers. In contrast, ligand-mediated stimulation of the RTK EGFR in HeLa cells did not affect sEV secretion. The release of sEVs induced by either constitutively active or ligand-activated KIT was remarkably decreased when cells were treated with KIT inhibitors, concomitant with reduced exosome markers in sEVs. Similarly, inhibition of oncogenic KIT signalling kinases like PI3K, and MAPK significantly reduced the secretion of sEVs. Thus, activation of KIT and its early signalling cascades stimulate the secretion of exosome-like sEVs in a regulated fashion, which may have implications for KIT-driven functions.

2.
Front Immunol ; 14: 1078958, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025992

RESUMO

The HMC-1.2 human mast cell (huMC) line is often employed in the study of attributes of neoplastic huMCs as found in patients with mastocytosis and their sensitivity to interventional drugs in vitro and in vivo. HMC-1.2 cells express constitutively active KIT, an essential growth factor receptor for huMC survival and function, due to the presence of two oncogenic mutations (D816V and V560G). However, systemic mastocytosis is commonly associated with a single D816V-KIT mutation. The functional consequences of the coexisting KIT mutations in HMC-1.2 cells are unknown. We used CRISPR/Cas9-engineering to reverse the V560G mutation in HMC-1.2 cells, resulting in a subline (HMC-1.3) with a single mono-allelic D816V-KIT variant. Transcriptome analyses predicted reduced activity in pathways involved in survival, cell-to-cell adhesion, and neoplasia in HMC-1.3 compared to HMC-1.2 cells, with differences in expression of molecular components and cell surface markers. Consistently, subcutaneous inoculation of HMC-1.3 into mice produced significantly smaller tumors than HMC-1.2 cells, and in colony assays, HMC-1.3 formed less numerous and smaller colonies than HMC-1.2 cells. However, in liquid culture conditions, the growth of HMC-1.2 and HMC-1.3 cells was comparable. Phosphorylation levels of ERK1/2, AKT and STAT5, representing pathways associated with constitutive oncogenic KIT signaling, were also similar between HMC-1.2 and HMC-1.3 cells. Despite these similarities in liquid culture, survival of HMC-1.3 cells was diminished in response to various pharmacological inhibitors, including tyrosine kinase inhibitors used clinically for treatment of advanced systemic mastocytosis, and JAK2 and BCL2 inhibitors, making HMC-1.3 more susceptible to these drugs than HMC-1.2 cells. Our study thus reveals that the additional V560G-KIT oncogenic variant in HMC-1.2 cells modifies transcriptional programs induced by D816V-KIT, confers a survival advantage, alters sensitivity to interventional drugs, and increases the tumorigenicity, suggesting that engineered huMCs with a single D816V-KIT variant may represent an improved preclinical model for mastocytosis.


Assuntos
Mastocitose Sistêmica , Mastocitose , Humanos , Animais , Camundongos , Mastocitose Sistêmica/tratamento farmacológico , Mastocitose Sistêmica/genética , Mastocitose Sistêmica/patologia , Sistemas CRISPR-Cas , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Mastocitose/genética , Mutação , Linhagem Celular
3.
J Extracell Vesicles ; 11(10): e12272, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36239715

RESUMO

Activating mutations in the receptor KIT promote the dysregulated proliferation of human mast cells (huMCs). The resulting neoplastic huMCs secrete extracellular vesicles (EVs) that can transfer oncogenic KIT among other cargo into recipient cells. Despite potential contributions to diseases, KIT-containing EVs have not been thoroughly investigated. Here, we isolated and characterized KIT-EV subpopulations released by neoplastic huMCs using an immunocapture approach that selectively isolates EVs containing KIT in its proper topology. Immunocapture of EVs on KIT antibody-coated electron microscopy (EM) affinity grids allowed to assess the morphology and size of KIT-EVs. Immunoblot analysis demonstrated KIT-EVs have a distinct protein profile from KIT-depleted EVs, contain exosome and microvesicle markers, and are separated into these subtypes by ultracentrifugation. Cell treatment with sphingomyelinase inhibitors shifted the protein content among KIT-EV subtypes, suggesting different biogenesis routes. Proteomic analysis revealed huMC KIT-EVs are enriched in proteins involved in signalling, immune responses, and cell migration, suggesting diverse biological functions, and indicated neoplastic huMCs disseminate KIT via shuttling in heterogeneous microvesicle- and exosome-like EVs. Further, selective KIT-immunocapture will enable the enrichment of specific huMC-derived EVs from complex human biosamples and facilitate an understanding of their in vivo functions and potential to serve as biomarkers of specific biological pathologies.


Assuntos
Exossomos , Vesículas Extracelulares , Biomarcadores/metabolismo , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Mastócitos/metabolismo , Proteômica , Esfingomielina Fosfodiesterase/metabolismo
4.
Commun Biol ; 5(1): 541, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35662277

RESUMO

Charcot-Marie-Tooth (CMT) disease 4A is an autosomal-recessive polyneuropathy caused by mutations of ganglioside-induced differentiation-associated protein 1 (GDAP1), a putative glutathione transferase, which affects mitochondrial shape and alters cellular Ca2+ homeostasis. Here, we identify the underlying mechanism. We found that patient-derived motoneurons and GDAP1 knockdown SH-SY5Y cells display two phenotypes: more tubular mitochondria and a metabolism characterized by glutamine dependence and fewer cytosolic lipid droplets. GDAP1 interacts with the actin-depolymerizing protein Cofilin-1 and beta-tubulin in a redox-dependent manner, suggesting a role for actin signaling. Consistently, GDAP1 loss causes less F-actin close to mitochondria, which restricts mitochondrial localization of the fission factor dynamin-related protein 1, instigating tubularity. GDAP1 silencing also disrupts mitochondria-ER contact sites. These changes result in lower mitochondrial Ca2+ levels and inhibition of the pyruvate dehydrogenase complex, explaining the metabolic changes upon GDAP1 loss of function. Together, our findings reconcile GDAP1-associated phenotypes and implicate disrupted actin signaling in CMT4A pathophysiology.


Assuntos
Actinas , Proteínas do Tecido Nervoso/metabolismo , Neuroblastoma , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Humanos , Mitocôndrias/metabolismo , Neuroblastoma/metabolismo , Complexo Piruvato Desidrogenase/metabolismo
5.
Front Immunol ; 13: 841045, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251038

RESUMO

Mast cell hyperactivity and accumulation in tissues are associated with allergy and other mast cell-related disorders. However, the molecular pathways regulating mast cell survival in homeostasis and disease are not completely understood. As glioma-associated oncogene (GLI) proteins are involved in both tissue homeostasis and in the hematopoietic system by regulating cell fate decisions, we sought to investigate the role for GLI proteins in the control of proliferation and survival of human mast cells. GLI1 transcripts were present in primary human mast cells and mast cell lines harboring or not activating mutations in the tyrosine kinase receptor KIT (HMC-1.1 and HMC-1.2, and LAD2 cells, respectively), while GLI2 transcripts were only present in HMC-1.1 and HMC-1.2 cells, suggesting a role for oncogenic KIT signaling in the regulation of GLI2. Reduction in GLI activity by small molecule inhibitors, or by shRNA-mediated knockdown of GLI1 or GLI2, led to increases in apoptotic cell death in both cultured human and murine mast cells, and reduced the number of peritoneal mast cells in mice. Although GLI proteins are typically activated via the hedgehog pathway, steady-state activation of GLI in mast cells occurred primarily via non-canonical pathways. Apoptosis induced by GLI silencing was associated with a downregulation in the expression of KIT and of genes that influence p53 stability and function including USP48, which promotes p53 degradation; and iASPP, which inhibits p53-induced transcription, thus leading to the induction of p53-regulated apoptotic genes. Furthermore, we found that GLI silencing inhibited the proliferation of neoplastic mast cell lines, an effect that was more pronounced in rapidly growing cells. Our findings support the conclusion that GLI1/2 transcription factors are critical regulators of mast cell survival and that their inhibition leads to a significant reduction in the number of mast cells in vitro and in vivo, even in cells with constitutively active KIT variants. This knowledge can potentially be applicable to reducing mast cell burden in mast cell-related diseases.


Assuntos
Mastócitos , Fatores de Transcrição , Proteína GLI1 em Dedos de Zinco , Proteína Gli2 com Dedos de Zinco , Animais , Proliferação de Células , Humanos , Mastócitos/metabolismo , Camundongos , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53 , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína Gli2 com Dedos de Zinco/genética , Proteína Gli2 com Dedos de Zinco/metabolismo
6.
J Cell Sci ; 134(3)2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33408245

RESUMO

DNA damage-induced SUMOylation serves as a signal for two antagonizing proteins that both stimulate repair of DNA double-strand breaks (DSBs). Here, we demonstrate that the SUMO-dependent recruitment of the deubiquitylating enzyme ataxin-3 to DSBs, unlike recruitment of the ubiquitin ligase RNF4, additionally depends on poly [ADP-ribose] polymerase 1 (PARP1)-mediated poly(ADP-ribosyl)ation (PARylation). The co-dependence of ataxin-3 recruitment on PARylation and SUMOylation temporally confines ataxin-3 to DSBs immediately after occurrence of DNA damage. We propose that this mechanism ensures that ataxin-3 prevents the premature removal of DNA repair proteins only during the early phase of the DSB response and does not interfere with the subsequent timely displacement of DNA repair proteins by RNF4. Thus, our data show that PARylation differentially regulates SUMO-dependent recruitment of ataxin-3 and RNF4 to DSBs, explaining how both proteins can play a stimulatory role at DSBs despite their opposing activities.


Assuntos
Ataxina-3 , Quebras de DNA de Cadeia Dupla , Poli ADP Ribosilação , Ataxina-3/genética , Linhagem Celular Tumoral , DNA , Dano ao DNA , Reparo do DNA/genética , Humanos , Poli(ADP-Ribose) Polimerase-1/genética
7.
J Clin Virol ; 135: 104713, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33352470

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can spread from symptomatic patients with COVID-19, but also from asymptomatic individuals. Therefore, robust surveillance and timely interventions are essential for the control of virus spread within the community. In this regard the frequency of testing and speed of reporting, but not the test sensitivity alone, play a crucial role. OBJECTIVES: In order to reduce the costs and meet the expanding demands in real-time RT-PCR (rRT-PCR) testing for SARS-CoV-2, complementary assays, such as rapid antigen tests, have been developed. Rigorous analysis under varying conditions is required to assess the clinical performance of these tests and to ensure reproducible results. RESULTS: We evaluated the sensitivity and specificity of a recently licensed rapid antigen test using 137 clinical samples in two institutions. Test sensitivity was between 88.2-89.6 % when applied to samples with viral loads typically seen in infectious patients. Of 32 rRT-PCR positive samples, 19 demonstrated infectivity in cell culture, and 84 % of these samples were reactive with the antigen test. Seven full-genome sequenced SARS-CoV-2 isolates and SARS-CoV-1 were detected with this antigen test, with no cross-reactivity against other common respiratory viruses. CONCLUSIONS: Numerous antigen tests are available for SARS-CoV-2 testing and their performance to detect infectious individuals may vary. Head-to-head comparison along with cell culture testing for infectivity may prove useful to identify better performing antigen tests. The antigen test analyzed in this study is easy-to-use, inexpensive, and scalable. It can be helpful in monitoring infection trends and thus has potential to reduce transmission.


Assuntos
Antígenos Virais/genética , Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , SARS-CoV-2/genética , COVID-19/virologia , Células CACO-2 , Linhagem Celular Tumoral , Células Cultivadas , Genoma Viral/genética , Humanos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Carga Viral/imunologia
8.
Pharmacol Ther ; 220: 107718, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33130192

RESUMO

Mast cells are tissue-resident immune cells that play key roles in the initiation and perpetuation of allergic inflammation, usually through IgE-mediated mechanisms. Mast cells are, however, evolutionary ancient immune cells that can be traced back to urochordates and before the emergence of IgE antibodies, suggesting their involvement in antibody-independent biological functions, many of which are still being characterized. Herein, we summarize recent advances in understanding the roles of mast cells in health and disease, partly through the study of emerging non-IgE receptors such as the Mas-related G protein-coupled receptor X2, implicated in pseudo-allergic reactions as well as in innate defense and neuronal sensing; the mechano-sensing adhesion G protein-coupled receptor E2, variants of which are associated with familial vibratory urticaria; and purinergic receptors, which orchestrate tissue damage responses similarly to the IL-33 receptor. Recent evidence also points toward novel mechanisms that contribute to mast cell-mediated pathophysiology. Thus, in addition to releasing preformed mediators contained in granules and synthesizing mediators de novo, mast cells also secrete extracellular vesicles, which convey biological functions. Understanding their release, composition and uptake within a variety of clinical conditions will contribute to the understanding of disease specific pathology and likely lead the way to novel therapeutic approaches. We also discuss recent advances in the development of therapies targeting mast cell activity, including the ligation of inhibitory ITIM-containing receptors, and other strategies that suppress mast cells or responses to mediators for the management of mast cell-related diseases.


Assuntos
Inflamação , Mastócitos , Humanos , Imunoglobulina E , Inflamação/tratamento farmacológico , Mastócitos/patologia , Receptores Acoplados a Proteínas G
9.
Free Radic Biol Med ; 112: 350-359, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28807815

RESUMO

Bcl-xL is an anti-apoptotic protein that localizes to the outer mitochondrial membrane and influences mitochondrial bioenergetics by controlling Ca2+ influx into mitochondria. Here, we analyzed the effect of mitochondrial Bcl-xL on mitochondrial shape and function in knockout (KO), wild type and rescued mouse embryonic fibroblast cell lines. Mitochondria of KO cells were more fragmented, exhibited a reduced ATP concentration, and reduced oxidative phosphorylation (OXPHOS) suggesting an increased importance of ATP generation by other means. Under steady-state conditions, acidification of the growth medium as a readout for glycolysis was similar, but upon inhibition of ATP synthase with oligomycin, KO cells displayed an instant increase in glycolysis. In addition, forced energy production through OXPHOS by replacing glucose with galactose in the growth medium rendered KO cells more susceptible to mitochondrial toxins. KO cells had increased cellular reactive oxygen species and were more susceptible to oxidative stress, but had higher glutathione levels, which were however more rapidly consumed under conditions of oxidative stress. This coincided with an increased activity and protein abundance of the pentose phosphate pathway protein glucose-6-phosphate dehydrogenase, which generates NADPH necessary to regenerate reduced glutathione. KO cells were also less susceptible to pharmacological inhibition of the pentose phosphate pathway. We conclude that mitochondrial Bcl-xL is involved in maintaining mitochondrial respiratory capacity. Its deficiency causes oxidative stress, which is associated with an increased glycolytic capacity and balanced by an increased activity of the pentose phosphate pathway.


Assuntos
Mitocôndrias/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Via de Pentose Fosfato/genética , Espécies Reativas de Oxigênio/metabolismo , Proteína bcl-X/genética , Trifosfato de Adenosina/biossíntese , Animais , Cálcio/metabolismo , Linhagem Celular , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Galactose/metabolismo , Galactose/farmacologia , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Glucose/metabolismo , Glucose/farmacologia , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Glicólise/efeitos dos fármacos , Glicólise/genética , Transporte de Íons , Camundongos , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/antagonistas & inibidores , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , NADP/metabolismo , Oligomicinas/farmacologia , Estresse Oxidativo , Via de Pentose Fosfato/efeitos dos fármacos , Transdução de Sinais , Proteína bcl-X/deficiência
10.
EMBO J ; 36(8): 1066-1083, 2017 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-28275011

RESUMO

The SUMO-targeted ubiquitin ligase RNF4 functions at the crossroads of the SUMO and ubiquitin systems. Here, we report that the deubiquitylation enzyme (DUB) ataxin-3 counteracts RNF4 activity during the DNA double-strand break (DSB) response. We find that ataxin-3 negatively regulates ubiquitylation of the checkpoint mediator MDC1, a known RNF4 substrate. Loss of ataxin-3 markedly decreases the chromatin dwell time of MDC1 at DSBs, which can be fully reversed by co-depletion of RNF4. Ataxin-3 is recruited to DSBs in a SUMOylation-dependent fashion, and in vitro it directly interacts with and is stimulated by recombinant SUMO, defining a SUMO-dependent mechanism for DUB activity toward MDC1. Loss of ataxin-3 results in reduced DNA damage-induced ubiquitylation due to impaired MDC1-dependent recruitment of the ubiquitin ligases RNF8 and RNF168, and reduced recruitment of 53BP1 and BRCA1. Finally, ataxin-3 is required for efficient MDC1-dependent DSB repair by non-homologous end-joining and homologous recombination. Consequently, loss of ataxin-3 sensitizes cells to ionizing radiation and poly(ADP-ribose) polymerase inhibitor. We propose that the opposing activities of RNF4 and ataxin-3 consolidate robust MDC1-dependent signaling and repair of DSBs.


Assuntos
Ataxina-3/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Proteína SUMO-1/metabolismo , Transdução de Sinais , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Ataxina-3/genética , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteínas de Ciclo Celular , Cromatina/genética , Cromatina/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Raios gama , Células HEK293 , Humanos , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Proteína SUMO-1/genética , Transativadores/genética , Fatores de Transcrição/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
11.
Br J Pharmacol ; 171(8): 2147-58, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24319993

RESUMO

BACKGROUND AND PURPOSE: The hippocampal cell line HT22 is an excellent model for studying the consequences of endogenous oxidative stress. Extracellular glutamate depletes cellular glutathione by blocking the glutamate/cystine antiporter system xc-. Glutathione depletion induces a well-defined programme of cell death characterized by an increase in reactive oxygen species and mitochondrial dysfunction. EXPERIMENTAL APPROACH: We compared the mitochondrial shape, the abundance of mitochondrial complexes and the mitochondrial respiration of HT22 cells, selected based on their resistance to glutamate, with those of the glutamate-sensitive parental cell line. KEY RESULTS: Glutamate-resistant mitochondria were less fragmented and displayed seemingly contradictory features: mitochondrial calcium and superoxide were increased while high-resolution respirometry suggested a reduction in mitochondrial respiration. This was interpreted as a reverse activity of the ATP synthase under oxidative stress, leading to hydrolysis of ATP to maintain or even elevate the mitochondrial membrane potential, suggesting these cells endure ineffective energy metabolism to protect their membrane potential. Glutamate-resistant cells were also resistant to oligomycin, an inhibitor of the ATP synthase, but sensitive to deoxyglucose, an inhibitor of hexokinases. Exchanging glucose with galactose rendered resistant cells 1000-fold more sensitive to oligomycin. These results, together with a strong increase in cytosolic hexokinase 1 and 2, a reduced lactate production and an increased activity of glucose-6-phosphate dehydrogenase, suggest that glutamate-resistant HT22 cells shuttle most available glucose towards the hexose monophosphate shunt to increase glutathione recovery. CONCLUSIONS AND IMPLICATIONS: These results indicate that mitochondrial and metabolic adaptations play an important role in the resistance of cells to oxidative stress.


Assuntos
Metabolismo Energético/fisiologia , Hipocampo/fisiopatologia , Mitocôndrias/fisiologia , Neurônios/fisiologia , Estresse Oxidativo/fisiologia , Animais , Cálcio/metabolismo , Contagem de Células , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Respiração Celular/efeitos dos fármacos , Respiração Celular/fisiologia , Desoxiglucose/farmacologia , Resistência a Medicamentos/fisiologia , Metabolismo Energético/efeitos dos fármacos , Glucosefosfato Desidrogenase/metabolismo , Ácido Glutâmico/farmacologia , Glutationa/metabolismo , Hexoquinase/metabolismo , Hipocampo/efeitos dos fármacos , Ácido Láctico/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Complexos Multiproteicos/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Neurônios/metabolismo , Oligomicinas/farmacologia , Consumo de Oxigênio/efeitos dos fármacos , Superóxidos/metabolismo , Serina-Treonina Quinases TOR/metabolismo
12.
Hum Mol Genet ; 21(1): 150-62, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21965300

RESUMO

Mutations in GDAP1 lead to recessively or dominantly inherited peripheral neuropathies (Charcot-Marie-Tooth disease, CMT), indicating that GDAP1 is essential for the viability of cells in the peripheral nervous system. GDAP1 contains domains characteristic of glutathione-S-transferases (GSTs), is located in the outer mitochondrial membrane and induces fragmentation of mitochondria. We found GDAP1 upregulated in neuronal HT22 cells selected for resistance against oxidative stress. GDAP1 over-expression protected against oxidative stress caused by depletion of the intracellular antioxidant glutathione (GHS) and against effectors of GHS depletion that affect the mitochondrial membrane integrity like truncated BH3-interacting domain death agonist and 12/15-lipoxygenase. Gdap1 knockdown, in contrast, increased the susceptibility of motor neuron-like NSC34 cells against GHS depletion. Over-expression of wild-type GDAP1, but not of GDAP1 with recessively inherited mutations that cause disease and reduce fission activity, increased the total cellular GHS content and the mitochondrial membrane potential up to a level where it apparently limits mitochondrial respiration, leading to reduced mitochondrial Ca(2+) uptake and superoxide production. Fibroblasts from autosomal-recessive CMT4A patients had reduced GDAP1 levels, reduced GHS concentration and a reduced mitochondrial membrane potential. Thus, our results suggest that the potential GST GDAP1 is implicated in the control of the cellular GHS content and mitochondrial activity, suggesting an involvement of oxidative stress in the pathogenesis of CMT4A.


Assuntos
Doença de Charcot-Marie-Tooth/metabolismo , Glutationa/metabolismo , Potencial da Membrana Mitocondrial , Proteínas do Tecido Nervoso/metabolismo , Linhagem Celular , Doença de Charcot-Marie-Tooth/genética , Humanos , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/genética , Estresse Oxidativo
13.
Biotechnol Lett ; 30(6): 1041-4, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18246302

RESUMO

We provide a simple but very efficient method for RNA preparation from Saccharomyces cerevisiae based on a standard chromosomal DNA isolation protocol. The method yields DNA-free total RNA, including mRNA, rRNA, and tRNA but can easily be adjusted to considerably enrich low molecular weight RNAs, such as tRNAs and the small rRNA species (5S and 5.8S). The procedure was proven and validated by verification of cDNAs belonging to four different genes, two of which encoding polypeptides and two tRNA genes. Besides its simplicity, the method is further advantageous in terms of safety (omitting hazardous phenol) and cost efficiency.


Assuntos
DNA Fúngico/isolamento & purificação , RNA Fúngico/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Desoxirribonuclease I/metabolismo , RNA Mensageiro/isolamento & purificação , RNA Ribossômico/isolamento & purificação , RNA Ribossômico 5,8S/isolamento & purificação , RNA Ribossômico 5S/isolamento & purificação , RNA de Transferência/isolamento & purificação , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA