Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Periodontal Res ; 59(1): 204-219, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37957813

RESUMO

BACKGROUND AND OBJECTIVE: Gallic acid (GA) possesses various beneficial functions including antioxidant, anticancer, anti-inflammatory as well as inhibiting osteoclastogeneis. However, effects on osteogenic differentiation, especially in human ligament periodontal (hPDL) cells, remain unclear. Thus, the aim of this study was to evaluate the function of GA on osteogenesis and anti-inflammation in hPDL cells and to explore the involved underlying mechanism. METHODS: Porphyromonas gingivalis lipopolysaccharide (Pg-LPS) treatment was used as a model for periodontitis. ROS production was determined by H2DCFDA staining. Trans-well and wound healing assays were performed for checking the migration effect of GA. Alizarin red and alkaline phosphatase activity (ALP) assays were performed to evaluate osteogenic differentiation. Osteogenesis and inflammatory-related genes and proteins were measured by real-time PCR and western blot. RESULTS: Our results showed that GA-treated hPDL cells had higher proliferation and migration effect. GA inhibited ROS production-induced by Pg-LPS. Besides, GA abolished Pg-LPS-induced inflammation cytokines (il-6, il-1ß) and inflammasome targets (Caspase-1, NLRP3). In addition, GA promoted ALP activity and mineralization in hPDL cells, lead to enhance osteoblast differentiation process. The effect of GA is related to G-protein-coupled receptor 35 (GPR35)/GSK3ß/ß-catenin signaling pathway. CONCLUSION: GA attenuated Pg-LPS-induced inflammatory responses and periodontitis in hPDL cells. Taken together, GA may be targeted for therapeutic interventions in periodontal diseases.


Assuntos
Osteogênese , Periodontite , Humanos , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/farmacologia , Ligamento Periodontal , beta Catenina/metabolismo , Ácido Gálico/farmacologia , Ácido Gálico/metabolismo , Lipopolissacarídeos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Células Cultivadas , Transdução de Sinais , Diferenciação Celular , Periodontite/tratamento farmacológico , Periodontite/metabolismo , Anti-Inflamatórios/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Osteoblastos
2.
Biochem Pharmacol ; 216: 115768, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37652106

RESUMO

Nonalcoholic fatty liver disease (NAFLD) has been linked to fat accumulation in the liver and lipid metabolism imbalance. Sesamin, a lignan commonly found in sesame seed oil, possesses antioxidant, anti-inflammatory, and anticancer properties. However, the precise mechanisms by which sesamin prevents hepatic steatosis are not well understood. This study aimed to explore the molecular mechanisms by which sesamin may improve lipid metabolism dysregulation. A in vitro hepatic steatosis model was established by exposing HepG2 cells to palmitate sodium. The results showed that sesamin effectively mitigated lipotoxicity and reduced reactive oxygen species production. Additionally, sesamin suppressed lipid accumulation by regulating key factors involved in lipogenesis and lipolysis, such as fatty acid synthase (FASN), sterol regulatory element-binding protein 1c (SREBP-1c), forkhead box protein O-1, and adipose triglyceride lipase. Molecular docking results indicated that sesamin could bind to estrogen receptor α (ERα) and reduce FASN and SREBP-1c expression via the Ca2+/calmodulin-dependent protein kinase kinase ß (CaMKKß)/AMP-activated protein kinase (AMPK) signaling pathway. Sesamin attenuated palmitate-induced lipotoxicity and regulated hepatic lipid metabolism in HepG2 cells by activating the ERα/CaMKKß/AMPK signaling pathway. These findings suggest that sesamin can improve lipid metabolism disorders and is a promising candidate for treating hepatic steatosis.


Assuntos
Lignanas , Hepatopatia Gordurosa não Alcoólica , Humanos , Receptor alfa de Estrogênio/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina , Simulação de Acoplamento Molecular , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Lignanas/farmacologia , Metabolismo dos Lipídeos , Células Hep G2 , Transdução de Sinais , Palmitatos/metabolismo
3.
J Agric Food Chem ; 71(26): 10037-10049, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37260315

RESUMO

Osteoporosis and Alzheimer's disease are typical types of dementia in seniors, which share common risk factors. Previous studies have shown that citizens with osteoporosis are more likely than healthy individuals to be at risk of Alzheimer's disease. Citropten, found in Citrus aurantifolia, has been reported to have several pharmacological activities; however, its antiosteoclastogenic activity remains unknown. Here, receptor activator nuclear factor κB ligand (RANKL)-induced osteoclast differentiation, formation, and function in the presence of amyloid beta (Aß) were attenuated by citropten in the RAW 264.7 cell line. The expression of osteoclast specific genes and proteins indicated that citropten pretreatment lowers the MAPK and PLCγ/Ca2+ signaling pathways. Molecular docking simulations revealed that citropten interacts with the active sites of proteins in the calcium signaling pathway, which have negative binding affinities. These findings indicate that, through Aß regulation, the RANKL-induced osteoclast can be suppressed by citropten, suggesting that citropten is a potential candidate for treating osteoclastogenesis-related diseases.


Assuntos
Doença de Alzheimer , Osteoporose , Humanos , Osteogênese , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Simulação de Acoplamento Molecular , Diferenciação Celular , Transdução de Sinais , Osteoclastos/metabolismo , NF-kappa B/metabolismo , Osteoporose/metabolismo , Ligante RANK/genética , Ligante RANK/metabolismo , Fatores de Transcrição NFATC/genética
4.
Phytother Res ; 36(9): 3601-3618, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35871535

RESUMO

Puerarin, the major bioactive ingredient isolated from the root of Pueraria lobata (Willd.), attenuates body weight gain and reduces lipid levels in high-fat diet-induced obese mice; however, the underlying mechanism responsible for regulating lipid metabolism remains unclear. This study investigated the molecular mechanism(s) underlying the role of puerarin in regulating lipogenesis and lipolysis in human HepG2 cells. In this study, puerarin strongly inhibited the expression of fatty acid synthase (FASN) and sterol regulatory element binding protein 1c (SREBP-1c). Moreover, puerarin significantly induced the expression of adipose triglyceride lipase (ATGL), which is responsible for triacylglycerol hydrolase activity in cells. Puerarin enhanced 5' AMP-activated protein kinase (AMPK) activity, which is a central regulator of hepatic lipid metabolism. Furthermore, this AMPK activation could be mediated by sirtuin 1 (SIRT1) and calcium signaling pathways involved in G protein-coupled estrogen receptor (GPER) signaling. GPER blockage significantly reversed the effect of puerarin on lipid accumulation and the related signaling pathways. Docking studies showed that puerarin could bind in the GPER in a similar manner as GPER agonist G1. Our results suggest that puerarin can improve hepatic steatosis by activating GPER; it's signaling cascade sequentially induced calcium and SIRT1 signaling pathways. Thus, puerarin may be a potential therapeutic agent for the treatment of non-alcoholic fatty liver disease.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Sirtuína 1 , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Cálcio/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/farmacologia , Células Hep G2 , Humanos , Isoflavonas , Metabolismo dos Lipídeos , Lipídeos , Fígado , Camundongos , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores de Estrogênio/metabolismo , Transdução de Sinais , Sirtuína 1/metabolismo
5.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35054804

RESUMO

The white-rot fungi Ceriporia lacerata is used in bioremediation, such as lignocellulose degradation, in nature. Submerged cultures and extracts of C. lacerata mycelia (CLM) have been reported to contain various active ingredients, including ß-glucan and extracellular polysaccharides, and to exert anti-diabetogenic properties in mice and cell lines. However, the immunostimulatory effects have not yet been reported. This study aimed to identify the immunomodulatory effects, and underlying mechanisms thereof, of submerged cultures of CLM using RAW264.7 macrophages and cyclophosphamide (CTX)-induced immunosuppression in mice. Compared to CTX-induced immunosuppressed mice, the spleen and thymus indexes in mice orally administered CLM were significantly increased; body weight loss was alleviated; and natural killer (NK) cytotoxicity, lymphocyte proliferation, and cytokine (tumor necrosis factor [TNF]-α, interferon [IFN]-γ, and interleukin [IL]-2) production were elevated in the serum. In RAW264.7 macrophages, treatment with CLM induced phagocytic activity, increased the production of nitric oxide (NO), and promoted mRNA expression of the immunomodulatory cytokines TNF-α, IFN-γ, IL-1ß, IL-6, IL-10, and IL-12. In addition, CLM increased the inducible NO synthase (iNOS) concentration in macrophages, similar to lipopolysaccharide (LPS) stimulation. Mechanistic studies showed that CLM induced the activation of the NF-κB, PI3k/Akt, ERK1/2, and JNK1/2 pathways. Moreover, the phosphorylation of NF-κB and IκB induced by CLM in RAW264.7 cells was suppressed by specific MAPKs and PI3K inhibitors. Further experiments with a TLR4 inhibitor demonstrated that the production of TNF-α, IL-1ß, and IL-6 induced by CLM was decreased after TLR4 was blocked. Overall, CLM protected against CTX-induced adverse reactions by enhancing humoral and cellular immune functions, and has potential as an immunomodulatory agent.


Assuntos
Citocinas/sangue , Agentes de Imunomodulação/farmacologia , Terapia de Imunossupressão , Macrófagos/efeitos dos fármacos , Micélio/química , Polyporales/química , Animais , Ciclofosfamida/toxicidade , Citocinas/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Células RAW 264.7 , Transdução de Sinais
6.
Biochem Pharmacol ; 192: 114721, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34363795

RESUMO

G protein-coupled estrogen receptor (GPER) is important for maintaining normal blood vessel function by preventing endothelial cell dysfunction. It has been reported that G-1, an agonist of GPER, increases nitric oxide (NO) production through the phosphorylation of endothelial nitric oxide synthase (eNOS). However, the effect of GPER activation on eNOS expression has not been studied. Our results show that G-1 significantly increased the expression of eNOS and Kruppel-like factor 2 (KLF2) in human endothelial EA.hy926 cells. The individual silences of KLF2 and GPER attenuated G-1-induced eNOS expression. In addition, inhibition of the Gαq and Gßγ suppressed G-1-induced the expression of eNOS and KLF2 in EA.hy926 cells. Interestingly, these effects were similar in HUVECs. Furthermore, we found that GPER-mediated Ca2+ signaling increased the phosphorylation of CaMKKß, AMPK, and CaMKIIα in the cells. The phosphorylation of histone deacetylase 5 (HDAC5) by activation of AMPK and CaMKIIα increased the expression of eNOS via transcriptional activity of KLF2. We further demonstrate that GPER activation increased the phosphorylation of Src, EGFR, ERK5, and MEF2C and consequently induced the expression of eNOS and KLF2. Meanwhile, inhibition of ERK5 and HDAC5 suppressed the expression of eNOS and KLF2 induced by G-1 in the cells. These findings suggest that GPER provides a novel mechanism for understanding the regulation of eNOS expression and is an essential therapeutic target in preventing cardiovascular-related endothelial dysfunction.


Assuntos
Sinalização do Cálcio/fisiologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Óxido Nítrico Sintase Tipo III/biossíntese , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Ciclopentanos/farmacologia , Receptores ErbB/metabolismo , Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Óxido Nítrico Sintase Tipo III/genética , Quinolinas/farmacologia , Receptores Acoplados a Proteínas G/agonistas
7.
Int J Mol Sci ; 22(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466670

RESUMO

Inflammatory diseases are caused by excessive inflammation from pro-inflammatory mediators and cytokines produced by macrophages. The Nrf2 signaling pathway protects against inflammatory diseases by inhibiting excessive inflammation via the regulation of antioxidant enzymes, including HO-1 and NQO1. We investigated the anti-inflammatory effect of impressic acid (IPA) isolated from Acanthopanax koreanum on the lipopolysaccharide (LPS)-induced inflammation and the underlying molecular mechanisms in RAW264.7 cells. IPA attenuated the LPS-induced production of pro-inflammatory cytokines and reactive oxygen species, and the activation of the NF-κB signaling pathway. IPA also increased the protein levels of Nrf2, HO-1, and NQO1 by phosphorylating CaMKKß, AMPK, and GSK3ß. Furthermore, ML385, an Nrf2 inhibitor, reversed the inhibitory effect of IPA on LPS-induced production of pro-inflammatory cytokines in RAW264.7 cells. Therefore, IPA exerts an anti-inflammatory effect via the AMPK/GSK3ß/Nrf2 signaling pathway in macrophages. Taken together, the findings suggest that IPA has preventive potential for inflammation-related diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Lipopolissacarídeos/imunologia , Macrófagos/efeitos dos fármacos , Triterpenos/farmacologia , Proteínas Quinases Ativadas por AMP/imunologia , Animais , Anti-Inflamatórios/química , Eleutherococcus/química , Glicogênio Sintase Quinase 3 beta/imunologia , Inflamação/tratamento farmacológico , Inflamação/imunologia , Macrófagos/imunologia , Camundongos , Fator 2 Relacionado a NF-E2/imunologia , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Triterpenos/química
8.
J Agric Food Chem ; 68(11): 3474-3484, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32077699

RESUMO

Sesamin, the most abundant lignan in sesame seed oil, has many biological activities. However, the underlying molecular mechanisms behind the regulatory effects of sesamin on endothelial nitric oxide synthase (eNOS) activity and nitric oxide (NO) generation in endothelial cells (ECs) remain unclear. Sesamin induced the intracellular level of NO and eNOS phosphorylation in ECs in a concentration- and time-dependent manner. Additionally, sesamin induced levels of intracellular calcium, leading to the phosphorylation of calmodulin-dependent protein kinase II (CaMKII) at Thr286, calcium/calmodulin-dependent protein kinase kinase beta (CaMKKß) at Ser511, protein kinase A (PKA) at Thr197, Akt at Ser473, and AMP-activated protein kinase (AMPK) at Thr172. In particular, blocking of the transient receptor potential vanilloid type 1 (TRPV1) channel by capsazepine (TRPV1 antagonist), as well as TRPV1 knockdown via TRPV1 silencing RNA, abrogated sesamin-induced PKA, Akt, AMPK, CaMKII, CaMKKß, and eNOS phosphorylation and NO level in ECs. Furthermore, sesamin inhibited TNF-α-induced NF-κB translocation, intercellular adhesion molecule-1 expression, and monocyte adhesion. Sesamin triggered eNOS activity and NO production via activation of TRPV1-calcium signaling, which involved the phosphorylation of PKA, CaMKII, CaMKKß, Akt, and AMPK. Sesamin may be useful for treating or preventing the endothelial dysfunction correlated with cardiovascular diseases.


Assuntos
Lignanas , Óxido Nítrico Sintase Tipo III , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Dioxóis/farmacologia , Células Endoteliais/metabolismo , Lignanas/farmacologia , Óxido Nítrico , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo
9.
Int J Mol Sci ; 20(23)2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31775380

RESUMO

Human cytochrome P450 1B1 (CYP1B1)-mediated biotransformation of endobiotics and xenobiotics plays an important role in the progression of human breast cancer. In this study, we investigated the effects of WY-14643, a peroxisome proliferator-activated receptor α (PPARα) agonist, on CYP1B1 expression and the related mechanism in MCF7 breast cancer cells. We performed quantitative reverse transcription-polymerase chain reaction, transient transfection, and chromatin immunoprecipitation to evaluate the effects of PPARα on peroxisome proliferator response element (PPRE)-mediated transcription. WY-14643 increased the protein and mRNA levels of CYP1B1, as well as promoter activity, in MCF-7 cells. Moreover, WY-14643 plus GW6471, a PPARα antagonist, significantly inhibited the WY-14643-mediated increase in CYP1B1 expression. PPARα knockdown by a small interfering RNA markedly suppressed the induction of CYP1B1 expression by WY-14643, suggesting that WY-14643 induces CYP1B1 expression via a PPARα-dependent mechanism. Bioinformatics analysis identified putative PPREs (-833/-813) within the promoter region of the CYP1B1 gene. Inactivation of these putative PPREs by deletion mutagenesis suppressed the WY-14643-mediated induction of CYP1B1 promoter activation. Furthermore, WY-14643 induced PPARα to assume a form capable of binding specifically to the PPRE-binding site in the CYP1B1 promoter. Our findings suggest that WY-14643 induces the expression of CYP1B1 through activation of PPARα.


Assuntos
Neoplasias da Mama/metabolismo , Citocromo P-450 CYP1B1/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , PPAR alfa/metabolismo , Proliferadores de Peroxissomos/farmacologia , Pirimidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Proliferação de Células , Citocromo P-450 CYP1B1/metabolismo , Feminino , Humanos , PPAR alfa/genética , Regiões Promotoras Genéticas , Elementos de Resposta , Células Tumorais Cultivadas
10.
Toxicol Res ; 35(1): 93-101, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30766661

RESUMO

Tetrabromobisphenol A (TBBPA), the most common industrial brominated flame retardant, acts as a cytotoxic, neurotoxic, and immunotoxicant, causing inflammation and tumors. However, the mechanism of TBBPA-induced matrix metalloproteinase-9 (MMP-9) expression in human breast cancer cells is not clear. In human breast cancer MCF-7 cells, treatment with TBBPA significantly induced the expression and promoter activity of MMP-9. Transient transfection with MMP-9 mutation promoter constructs verified that NF-κB and AP-1 response elements are responsible for the effects of TBBPA. Furthermore, TBBPA-induced MMP-9 expression was mediated by NF-κB and AP-1 transcription activation as a result of the phosphorylation of the Akt and MAPK signaling pathways. Moreover, TBBPA-induced activation of Akt/MAPK pathways and MMP-9 expression were attenuated by a specific NADPH oxidase inhibitor, and the ROS scavenger. These results suggest that TBBPA can induce cancer cell metastasis by releasing MMP-9 via ROS-dependent MAPK, and Akt pathways in MCF-7 cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA