Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmacol Ther ; 200: 110-125, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31028836

RESUMO

Antibody-drug conjugates (ADCs) are a promising therapeutic modality for oncology indications. The concept of an ADC platform is to increase the therapeutic index (TI) of chemotherapeutics through more selective delivery of cytotoxic agents to tumor cells while limiting exposure to healthy normal cells. Despite the use of antibodies targeting antigens abundantly and/or exclusively expressed on cancer cells (i.e., target cells), dose limiting toxicities (DLTs) in normal cells/tissues are frequently reported even at suboptimal therapeutic doses. Although advancement of ADC technology has helped to optimize all three key components (i.e., mAb, linker, and payload), DLTs remain a key challenge for ADC development. Mechanisms of ADC toxicity in normal cells/tissues are not clearly understood, but the majority of DLTs are considered to be target-independent. In addition to linker-drug instability contributing to the premature release of cytotoxic drug (payload) in circulation, uptake/trafficking of intact ADCs by both receptor-dependent (FcγRs, FcRn and C-type lectin receptors), and-independent (non-specific endocytosis) mechanisms may contribute to off-target toxicity in normal cells. In this article, we review potential mechanisms of target-independent ADC uptake and toxicity in normal cells, as well as discuss components of ADCs which may influence these mechanisms. This information will provide a deeper understanding of the underlying mechanisms of ADC off-target toxicity and prove helpful toward improving the overall TI of the next generation of ADCs.


Assuntos
Imunoconjugados/efeitos adversos , Imunoconjugados/farmacocinética , Animais , Transporte Biológico , Humanos
2.
J Cell Physiol ; 227(5): 1873-82, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21732358

RESUMO

Intermittent parathyroid hormone (PTH) adds new bone to the osteoporotic skeleton; the transcription factor Nmp4/CIZ represses PTH-induced bone formation in mice and as a consequence is a potential drug target for improving hormone clinical efficacy. To explore the impact of Nmp4/CIZ on osteoblast phenotype, we immortalized bone marrow stromal cells from wildtype (WT) and Nmp4-knockout (KO) mice using murine telomerase reverse transcriptase. Clonal lines were initially chosen based on their positive staining for alkaline phosphatase and capacity for mineralization. Disabling Nmp4/CIZ had no gross impact on osteoblast phenotype development. WT and KO clones exhibited identical sustained growth, reduced population doubling times, extended maintenance of the mature osteoblast phenotype, and competency for differentiating toward the osteoblast and adipocyte lineages. Additional screening of the immortalized cells for PTH-responsiveness permitted further studies with single WT and KO clones. We recently demonstrated that PTH-induced c-fos femoral mRNA expression is enhanced in Nmp4-KO mice and in the present study we observed that hormone stimulated either an equivalent or modestly enhanced increase in c-fos mRNA expression in both primary null and KO clone cells depending on PTH concentration. The null primary osteoblasts and KO clone cells exhibited a transiently enhanced response to bone morphogenetic protein 2 (BMP2). The clones exhibited lower and higher expressions of the PTH receptor (Pthr1) and the BMP2 receptor (Bmpr1a, Alk3), respectively, as compared to primary cells. These immortalized cell lines will provide a valuable tool for disentangling the complex functional roles underlying Nmp4/CIZ regulation of bone anabolism.


Assuntos
Células da Medula Óssea/fisiologia , Proteínas Associadas à Matriz Nuclear/genética , Osteoblastos/fisiologia , Células Estromais/fisiologia , Telomerase/metabolismo , Fatores de Transcrição/genética , Adipócitos/citologia , Adipócitos/fisiologia , Animais , Células da Medula Óssea/citologia , Proteína Morfogenética Óssea 2/farmacologia , Linhagem Celular , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas à Matriz Nuclear/metabolismo , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Hormônio Paratireóideo/farmacologia , Fenótipo , Células Estromais/citologia , Telomerase/genética , Fatores de Transcrição/metabolismo
3.
Toxicology ; 232(1-2): 1-14, 2007 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-17267091

RESUMO

The aim was to study the subchronic toxicity of perchloroethylene (Perc) by measuring injury and repair in liver and kidney in relation to disposition of Perc and its major metabolites. Male SW mice (25-29g) were given three dose levels of Perc (150, 500, and 1000 mg/kg day) via aqueous gavage for 30 days. Tissue injury was measured during the dosing regimen (0, 1, 7, 14, and 30 days) and over a time course of 24-96h after the last dose (30 days). Perc produced significant liver injury (ALT) after single day exposure to all three doses. Liver injury was mild to moderate and regressed following repeated exposure for 30 days. Subchronic Perc exposure induced neither kidney injury nor dysfunction during the entire time course as evidenced by normal renal histology and BUN. TCA was the major metabolite detected in blood, liver, and kidney. Traces of DCA were also detected in blood at initial time points after single day exposure. With single day exposure, metabolism of Perc to TCA was saturated with all three doses. AUC/dose ratio for TCA was significantly decreased with a concomitant increase in AUC/dose of Perc levels in liver and kidney after 30 days as compared to 1 day exposures, indicating inhibition of metabolism upon repeated exposure to Perc. Hepatic CYP2E1 expression and activity were unchanged indicating that CYP2E1 is not the critical enzyme inhibited. Hepatic CYP4A expression, measured as a marker of peroxisome proliferation was increased transiently only on day 7 with the high dose, but was unchanged at later time points. Liver tissue repair peaked at 7 days, with all three doses and was sustained after medium and high dose exposure for 14 days. These data indicate that subchronic Perc exposure via aqueous gavage does not induce nephrotoxicity and sustained hepatotoxicity suggesting adaptive hepatic repair mechanisms. Enzymes other than CYP2E1, involved in the metabolism of Perc may play a critical role in the metabolism of Perc upon subchronic exposure in SW mice. Liver injury decreased during repeated exposure due to inhibition of metabolism and possibly due to adaptive tissue repair mechanisms.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Poluentes Ambientais/toxicidade , Nefropatias/induzido quimicamente , Tetracloroetileno/toxicidade , Alanina Transaminase/sangue , Animais , Nitrogênio da Ureia Sanguínea , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP4A/metabolismo , Replicação do DNA/fisiologia , Poluentes Ambientais/administração & dosagem , Poluentes Ambientais/farmacocinética , Glutationa/metabolismo , Histocitoquímica , Nefropatias/enzimologia , Nefropatias/metabolismo , Nefropatias/patologia , Hepatopatias/enzimologia , Hepatopatias/metabolismo , Hepatopatias/patologia , Masculino , Camundongos , Microssomos Hepáticos/enzimologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Tetracloroetileno/administração & dosagem , Tetracloroetileno/farmacocinética , Timidina/metabolismo , Ácido Tricloroacético/metabolismo
4.
Toxicology ; 226(2-3): 107-17, 2006 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-16901604

RESUMO

Previously, we reported that an ordinarily non-lethal dose of thioacetamide (TA, 300 mg/kg) causes 90% mortality in type 1 diabetic rats due to inhibited liver tissue repair, whereas 30 mg TA/kg allows 100% survival due to stimulated although delayed tissue repair. Objective of this investigation was to test whether prior administration of a low dose of TA (30 mg/kg) would lead to sustainable stimulation of liver tissue repair in type 1 diabetic rats sufficient to protect from a subsequently administered lethal dose of TA. Therefore, in the present study, the hypothesis that preplacement of tissue repair by a low dose of TA (30 mg TA/kg, ip) can reverse the hepatotoxicant sensitivity (autoprotection) in type 1 diabetic rats was tested. Preliminary studies revealed that a single intraperitoneal (ip) administration of TA causes 90% mortality in diabetic rats with as low as 75 mg/kg. To establish an autoprotection model in diabetic condition, diabetic rats were treated with 30 mg TA/kg (priming dose). Administration of priming dose stimulated tissue repair that peaked at 72h, at which time these rats were treated with a single ip dose of 75 mg TA/kg. Our results show that tissue repair stimulated by the priming dose enabled diabetic rats to overexpress, calpastatin, endogenous inhibitor of calpain, to inhibit calpain-mediated progression of liver injury induced by the subsequent administration of lethal dose, resulting in 100% survival. Further investigation revealed that protection observed in these rats is not due to decreased bioactivation. These studies underscore the importance of stimulation of tissue repair in the final outcome of liver injury (survival/death) after hepatotoxicant challenge. Furthermore, these results also suggest that it is possible to stimulate tissue repair in diabetics to overcome the enhanced sensitivity of hepatotoxicants.


Assuntos
Carcinógenos/farmacologia , Carcinógenos/toxicidade , Diabetes Mellitus Tipo 1/complicações , Tioacetamida/farmacologia , Tioacetamida/toxicidade , Animais , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Citocromo P-450 CYP2E1/metabolismo , DNA/biossíntese , DNA/genética , Replicação do DNA/efeitos dos fármacos , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 1/fisiopatologia , Imuno-Histoquímica , Fígado/enzimologia , Fígado/patologia , Testes de Função Hepática , Masculino , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ratos , Ratos Sprague-Dawley , Timidina/metabolismo
5.
Toxicol Appl Pharmacol ; 216(1): 108-21, 2006 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16815507

RESUMO

Protection offered by pre-exposure priming with a small dose of a toxicant against the toxic and lethal effects of a subsequently administered high dose of the same toxicant is autoprotection. Although autoprotection has been extensively studied with diverse toxicants in acute exposure regimen, not much is known about autoprotection after priming with repeated exposure. The objective of this study was to investigate this concept following repeated exposure to a common water contaminant, chloroform. Swiss Webster (SW) mice, exposed continuously to either vehicle (5% Emulphor, unprimed) or chloroform (150 mg/kg/day po, primed) for 30 days, were challenged with a normally lethal dose of chloroform (750 mg chloroform/kg po) 24 h after the last exposure. As expected, 90% of the unprimed mice died between 48 and 96 h after administration of the lethal dose in contrast to 100% survival of mice primed with chloroform. Time course studies indicated lower hepato- and nephrotoxicity in primed mice as compared to unprimed mice. Hepatic CYP2E1, glutathione levels (GSH), and covalent binding of (14)C-chloroform-derived radiolabel did not differ between livers of unprimed and primed mice after lethal dose exposure, indicating that protection in liver is neither due to decreased bioactivation nor increased detoxification. Kidney GSH and glutathione reductase activity were upregulated, with a concomitant reduction in oxidized glutathione in the primed mice following lethal dose challenge, leading to decreased renal covalent binding of (14)C-chloroform-derived radiolabel, in the absence of any change in CYP2E1 levels. Buthionine sulfoximine (BSO) intervention led to 70% mortality in primed mice challenged with lethal dose. These data suggest that higher detoxification may play a role in the lower initiation of kidney injury observed in primed mice. Exposure of primed mice to a lethal dose of chloroform led to 40% lower chloroform levels (AUC(15-360 min)) in the systemic circulation. Exhalation of (14)C-chloroform was unchanged in primed as compared to unprimed mice (AUC(1-6 h)). Urinary excretion of (14)C-chloroform was higher in primed mice after administration of the lethal dose. However, neither slightly higher urinary elimination nor unchanged expiration can account for the difference in systemic levels of chloroform. Liver and kidney regeneration was inhibited by the lethal dose in unprimed mice leading to progressive injury, organ failure, and 90% mortality. In contrast, sustained and highly stimulated compensatory hepato- and nephrogenic repair prevented the progression of injury resulting in 100% survival of primed mice challenged with the lethal dose. These findings affirm the critical role of tissue regeneration and favorable detoxification (only in kidney) of the lethal dose of chloroform in subchronic chloroform priming-induced autoprotection.


Assuntos
Clorofórmio/administração & dosagem , Nefropatias/prevenção & controle , Hepatopatias/prevenção & controle , Alanina Transaminase/metabolismo , Animais , Área Sob a Curva , Butionina Sulfoximina/toxicidade , Doença Hepática Induzida por Substâncias e Drogas , Clorofórmio/farmacocinética , Clorofórmio/toxicidade , Citocromo P-450 CYP2E1/metabolismo , Relação Dose-Resposta a Droga , Tolerância a Medicamentos , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Intubação Gastrointestinal , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Nefropatias/induzido quimicamente , Nefropatias/mortalidade , Hepatopatias/mortalidade , Camundongos , Taxa de Sobrevida
6.
Toxicol Appl Pharmacol ; 213(3): 267-81, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16630638

RESUMO

The aims of the present study were to characterize the subchronic toxicity of chloroform by measuring tissue injury, repair, and distribution of chloroform and to assess the reasons for the development of tolerance to subchronic chloroform toxicity. Male Swiss Webster (SW) mice were given three dose levels of chloroform (150, 225, and 300 mg/kg/day) by gavage in aqueous vehicle for 30 days. Liver and kidney injury were measured by plasma ALT and BUN, respectively, and by histopathology. Tissue regeneration was assessed by (3)H-thymidine incorporation into hepato- and nephro-nuclear DNA and by proliferating cell nuclear antigen staining. In addition, GSH and CYP2E1 in liver and kidney were assessed at selected time points. The levels of chloroform were measured in blood, liver, and kidney during the dosing regimen (1, 7, 14, and 30 days). Kidney injury was evident after 1 day with all three doses and sustained until 7 days followed by complete recovery. Mild to moderate liver injury was observed from 1 to 14 days with all three dose levels followed by gradual decrease. Significantly higher regenerative response was evident in liver and kidney at 7 days, but the response was robust in kidney, preventing progression of injury beyond first week of exposure. While the kidney regeneration reached basal levels by 21 days, moderate liver regeneration with two higher doses sustained through the end of the dosing regimen and 3 days after that. Following repeated exposure for 7, 14, and 30 days, the blood and tissue levels of chloroform were substantially lower with all three dose levels compared to the levels observed with single exposure. Increased exhalation of (14)C-chloroform after repeated exposures explains the decreased chloroform levels in circulation and tissues. These results suggest that toxicokinetics and toxicodynamics (tissue regeneration) contribute to the tolerance observed in SW mice to subchronic chloroform toxicity. Neither bioactivation nor detoxification appears to play a decisive role in the development of this tolerance.


Assuntos
Clorofórmio/toxicidade , Rim/efeitos dos fármacos , Regeneração Hepática , Fígado/efeitos dos fármacos , Regeneração , Animais , Dióxido de Carbono/metabolismo , Clorofórmio/sangue , Clorofórmio/farmacocinética , Citocromo P-450 CYP2E1/metabolismo , Relação Dose-Resposta a Droga , Tolerância a Medicamentos , Expiração , Glutationa/metabolismo , Rim/patologia , Rim/fisiologia , Fígado/patologia , Fígado/fisiologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA