Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 25(5): 2479-2510, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38684907

RESUMO

The most prevalent genetic cause of both amyotrophic lateral sclerosis and frontotemporal dementia is a (GGGGCC)n nucleotide repeat expansion (NRE) occurring in the first intron of the C9orf72 gene (C9). Brain glucose hypometabolism is consistently observed in C9-NRE carriers, even at pre-symptomatic stages, but its role in disease pathogenesis is unknown. Here, we show alterations in glucose metabolic pathways and ATP levels in the brains of asymptomatic C9-BAC mice. We find that, through activation of the GCN2 kinase, glucose hypometabolism drives the production of dipeptide repeat proteins (DPRs), impairs the survival of C9 patient-derived neurons, and triggers motor dysfunction in C9-BAC mice. We also show that one of the arginine-rich DPRs (PR) could directly contribute to glucose metabolism and metabolic stress by inhibiting glucose uptake in neurons. Our findings provide a potential mechanistic link between energy imbalances and C9-ALS/FTD pathogenesis and suggest a feedforward loop model with potential opportunities for therapeutic intervention.


Assuntos
Esclerose Lateral Amiotrófica , Proteína C9orf72 , Demência Frontotemporal , Glucose , Fenótipo , Proteína ran de Ligação ao GTP , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Modelos Animais de Doenças , Expansão das Repetições de DNA/genética , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Glucose/metabolismo , Camundongos Transgênicos , Neurônios/metabolismo , Biossíntese de Proteínas , Proteína ran de Ligação ao GTP/metabolismo
2.
Int J Cancer ; 153(9): 1671-1683, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37497753

RESUMO

Breast cancer is composed of metabolically coupled cellular compartments with upregulation of TP53 Induced Glycolysis and Apoptosis Regulator (TIGAR) in carcinoma cells and loss of caveolin 1 (CAV1) with upregulation of monocarboxylate transporter 4 (MCT4) in fibroblasts. The mechanisms that drive metabolic coupling are poorly characterized. The effects of TIGAR on fibroblast CAV1 and MCT4 expression and breast cancer aggressiveness was studied using coculture and conditioned media systems and in-vivo. Also, the role of cytokines in promoting tumor metabolic coupling via MCT4 on cancer aggressiveness was studied. TIGAR downregulation in breast carcinoma cells reduces tumor growth. TIGAR overexpression in carcinoma cells drives MCT4 expression and NFkB activation in fibroblasts. IL6 and TGFB drive TIGAR upregulation in carcinoma cells, reduce CAV1 and increase MCT4 expression in fibroblasts. Tumor growth is abrogated in the presence of MCT4 knockout fibroblasts and environment. We discovered coregulation of c-MYC and TIGAR in carcinoma cells driven by lactate. Metabolic coupling primes the tumor microenvironment allowing for production, uptake and utilization of lactate. In sum, aggressive breast cancer is dependent on metabolic coupling.


Assuntos
Neoplasias da Mama , Carcinoma , Humanos , Feminino , Neoplasias da Mama/patologia , Proteínas Reguladoras de Apoptose/metabolismo , Glicólise , Ácido Láctico/metabolismo , NF-kappa B/metabolismo , Apoptose , Linhagem Celular Tumoral , Microambiente Tumoral , Proteína Supressora de Tumor p53/metabolismo
3.
Methods Cell Biol ; 163: 93-111, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33785171

RESUMO

Oral squamous cell carcinoma (OSCC) is the most common subsite of head and neck cancer, with a 5-year survival rate of only 50%. There is a pressing need for animal models that recapitulate the human disease to understand the factors driving OSCC carcinogenesis. Many laboratories have used the chemical carcinogen 4-nitroquinoline-1-oxide (4NQO) to investigate OSCC formation. The importance of the 4NQO mouse model is that it mimics the stepwise progression observed in OSCC patients. The 4NQO carcinogen model has the advantage that it can be used with transgenic mice with genetic modification in specific tissue types to investigate their role in driving cancer progression. Herein, we describe the basic approach for administering 4NQO to mice to induce OSCC and methods for assessing the tissue and disease progression.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , 4-Nitroquinolina-1-Óxido/toxicidade , Animais , Carcinogênese , Carcinoma de Células Escamosas/induzido quimicamente , Carcinoma de Células Escamosas/genética , Humanos , Camundongos , Camundongos Transgênicos , Neoplasias Bucais/induzido quimicamente , Carcinoma de Células Escamosas de Cabeça e Pescoço
4.
Int J Mol Sci ; 20(3)2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30754662

RESUMO

The retinal pigment epithelium (RPE) forms the outer blood⁻retina barrier and facilitates the transepithelial transport of glucose into the outer retina via GLUT1. Glucose is metabolized in photoreceptors via the tricarboxylic acid cycle (TCA) and oxidative phosphorylation (OXPHOS) but also by aerobic glycolysis to generate glycerol for the synthesis of phospholipids for the renewal of their outer segments. Aerobic glycolysis in the photoreceptors also leads to a high rate of production of lactate which is transported out of the subretinal space to the choroidal circulation by the RPE. Lactate taken up by the RPE is converted to pyruvate and metabolized via OXPHOS. Excess lactate in the RPE is transported across the basolateral membrane to the choroid. The uptake of glucose by cone photoreceptor cells is enhanced by rod-derived cone viability factor (RdCVF) secreted by rods and by insulin signaling. Together, the three cells act as symbiotes: the RPE supplies the glucose from the choroidal circulation to the photoreceptors, the rods help the cones, and both produce lactate to feed the RPE. In age-related macular degeneration this delicate ménage à trois is disturbed by the chronic infiltration of inflammatory macrophages. These immune cells also rely on aerobic glycolysis and compete for glucose and produce lactate. We here review the glucose metabolism in the homeostasis of the outer retina and in macrophages and hypothesize what happens when the metabolism of photoreceptors and the RPE is disturbed by chronic inflammation.


Assuntos
Degeneração Macular/etiologia , Degeneração Macular/metabolismo , Retina/metabolismo , Animais , Sobrevivência Celular , Suscetibilidade a Doenças , Metabolismo Energético , Predisposição Genética para Doença , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Degeneração Macular/patologia , Oxirredução , Retina/patologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia , Retinite/complicações , Retinite/patologia
5.
Front Oncol ; 8: 324, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30211114

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is the 6th most common human cancer and affects approximately 50,000 new patients every year in the US. The major risk factors for HNSCC are tobacco and alcohol consumption as well as oncogenic HPV infections. Despite advances in therapy, the overall survival rate for all-comers is only 50%. Understanding the biology of HNSCC is crucial to identifying new biomarkers, implementing early diagnostic approaches and developing novel therapies. As in several other cancers, HNSCC expresses elevated levels of MCT4, a member of the SLC16 family of monocarboxylate transporters. MCT4 is a H+-linked lactate transporter which functions to facilitate lactate efflux from highly glycolytic cells. High MCT4 levels in HNSCC have been associated with poor prognosis, but the role of MCT4 in the development and progression of this cancer is still poorly understood. In this study, we used 4-nitroquinoline-1-oxide (4NQO) to induce oral cancer in MCT4-/- and wild type littermates, recapitulating the disease progression in humans. Histological analysis of mouse tongues after 23 weeks of 4NQO treatment showed that MCT4-/- mice developed significantly fewer and less extended invasive lesions than wild type. In mice, as in human samples, MCT4 was not expressed in normal oral mucosa but was detected in the transformed epithelium. In the 4NQO treated mice we detected MCT4 in foci of the basal layer undergoing transformation, and progressively in areas of carcinoma in situ and invasive carcinomas. Moreover, we found MCT4 positive macrophages within the tumor and in the stroma surrounding the lesions in both human samples of HNSCC and in the 4NQO treated animals. The results of our studies showed that MCT4 could be used as an early diagnostic biomarker of HNSCC. Our finding with the MCT4-/- mice suggest MCT4 is a driver of progression to oral squamous cell cancer and MCT4 inhibitors could have clinical benefits for preventing invasive HNSCC.

6.
Am J Sports Med ; 46(9): 2222-2231, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29927623

RESUMO

BACKGROUND: Tendon injuries are common problems among athletes. Complete recovery of the mechanical structure and function of ruptured tendons is challenging. It has been demonstrated that upregulation of glycolysis and lactate production occurs in wounds, inflammation sites, and cancerous tumors, and these metabolic changes also control growth and differentiation of stem and progenitor cells. Similar metabolic changes have been reported in human healing tendons. In addition, lactate production has increased in progenitors isolated from injured tendons after treatment with IL-1ß. It is thought that the metabolic changes play a role in tendon healing after injury. HYPOTHESIS: Glucose metabolism is altered during tendon injury and healing, and modulation of this altered metabolism improves tendon repair. STUDY DESIGN: Controlled laboratory study. METHODS: The authors used the tendon injury model involving a complete incision of the Achilles tendon in C57BL/6J female mice and studied alterations of glucose metabolism in injured tendons with [U-13C]glucose and metabolomics analysis 1 and 4 weeks after surgery. They also examined the effects of dichloroacetate (DCA; an indirect lactate synthesis inhibitor) treatment on the recovery of structure and mechanical properties of injured tendons 4 weeks after surgery in the same mouse model. RESULTS: Significant changes in glucose metabolism in tendons after injury surgery were detected. 13C enrichment of metabolites and intermediates, flux through glycolysis, and lactate synthesis, as well as tricarboxylic acid cycle activity, were acutely increased 1 week after injury. Increased glycolysis and lactate generation were also found 4 weeks after injury. DCA-treated injured tendons showed decreased cross-sectional area and higher values of modulus, maximum stress, and maximum force when compared with vehicle-treated injured tendons. Improved alignment of the collagen fibers was also observed in the DCA group. Furthermore, DCA treatment reduced mucoid accumulation and ectopic calcification in injured tendons. CONCLUSION: The findings indicate that injured tendons acutely increase glycolysis and lactate synthesis after injury and that the inhibition of lactate synthesis by DCA is beneficial for tendon healing. CLINICAL RELEVANCE: Changing metabolism in injured tendons may be a therapeutic target for tendon repair.


Assuntos
Tendão do Calcâneo/lesões , Glucose/metabolismo , Lactatos/metabolismo , Traumatismos dos Tendões/reabilitação , Cicatrização/fisiologia , Animais , Fenômenos Biomecânicos , Colágeno/metabolismo , Ácido Dicloroacético , Modelos Animais de Doenças , Feminino , Glicólise , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória
7.
Exp Eye Res ; 172: 45-53, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29604281

RESUMO

The primary energy substrate of the lens is glucose and uptake of glucose from the aqueous humor is dependent on glucose transporters. GLUT1, the facilitated glucose transporter encoded by Slc2a1 is expressed in the epithelium of bovine, human and rat lenses. In the current study, we examined the expression of GLUT1 in the mouse lens and determined its role in maintaining lens transparency by studying effects of postnatal deletion of Slc2a1. In situ hybridization and immunofluorescence labeling were used to determine the expression and subcellular distribution of GLUT1 in the lens. Slc2a1 was knocked out of the lens epithelium by crossing transgenic mice expressing Cre recombinase under control of the GFAP promoter with Slc2a1loxP/loxP mice to generate Slc2a1loxP/loxP;GFAP-Cre+/0 (LensΔGlut1) mice. LensΔGlut1 mice developed visible lens opacities by around 3 months of age, which corresponded temporally with the total loss of detectable GLUT1 expression in the lens. Spectral domain optical coherence tomography (SD-OCT) imaging was used to monitor the formation of cataracts over time. SD-OCT imaging revealed that small nuclear cataracts were first apparent in the lenses of LensΔGlut1 mice beginning at about 2.7 months of age. Longitudinal SD-OCT imaging of LensΔGlut1 mice revealed disruption of mature secondary fiber cells after 3 months of age. Histological sections of eyes from LensΔGlut1 mice confirmed the disruption of the secondary fiber cells. The structural changes were most pronounced in fiber cells that had lost their organelles. In contrast, the histology of the lens epithelium in these mice appeared normal. Lactate and ATP were measured in lenses from LensΔGlut1 and control mice at 2 and 3 months of age. At 2 months of age, when GLUT1 was still detectable in the lens epithelium, albeit at low levels, the amount of lactate and ATP were not significantly different from controls. However, in lenses isolated from 3-month-old LensΔGlut1 mice, when GLUT1 was no longer detectable, levels of lactate and ATP were 50% lower than controls. Our findings demonstrate that in vivo, the transparency of mature lens fiber cells was dependent on glycolysis for ATP and the loss of GLUT1 transporters led to cataract formation. In contrast, lens epithelium and cortical fiber cells have mitochondria and could utilize other substrates to support their anabolic and catabolic needs.


Assuntos
Catarata/etiologia , Células Epiteliais/metabolismo , Deleção de Genes , Transportador de Glucose Tipo 1/genética , Cristalino/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Humor Aquoso/metabolismo , Western Blotting , Transportador 2 de Aminoácido Excitatório/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Glucose/metabolismo , Glicólise , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Reação em Cadeia da Polimerase em Tempo Real , Tomografia de Coerência Óptica
8.
Exp Eye Res ; 126: 77-84, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24485945

RESUMO

Mitochondrial dysfunction has been shown to contribute to age-related and proliferative retinal diseases. Over the past decade, the primary human fetal RPE (hfRPE) culture model has emerged as an effective tool for studying RPE function and mechanisms of retinal diseases. This model system has been rigorously characterized and shown to closely resemble native RPE cells at the genomic and protein level, and that they are capable of accomplishing the characteristic functions of a healthy native RPE (e.g., rod phagocytosis, ion and fluid transport, and retinoid cycle). In this review, we demonstrated that the metabolic activity of the RPE is an indicator of its health and state of differentiation, and present the hfRPE culture model as a valuable in vitro system for evaluating RPE metabolism in the context of RPE differentiation and retinal disease.


Assuntos
Metabolismo Energético/fisiologia , Modelos Biológicos , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Células Epiteliais/fisiologia , Feto/citologia , Humanos
9.
Cell Cycle ; 11(7): 1445-54, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22395432

RESUMO

We have recently proposed a new two-compartment model for understanding the Warburg effect in tumor metabolism. In this model, glycolytic stromal cells produce mitochondrial fuels (L-lactate and ketone bodies) that are then transferred to oxidative epithelial cancer cells, driving OXPHOS and mitochondrial metabolism. Thus, stromal catabolism fuels anabolic tumor growth via energy transfer. We have termed this new cancer paradigm the "reverse Warburg effect," because stromal cells undergo aerobic glycolysis, rather than tumor cells. To assess whether this mechanism also applies during cancer cell metastasis, we analyzed the bioenergetic status of breast cancer lymph node metastases, by employing a series of metabolic protein markers. For this purpose, we used MCT4 to identify glycolytic cells. Similarly, we used TO MM20 and COX staining as markers of mitochondrial mass and OXPHOS activity, respectively. Consistent with the "reverse Warburg effect," our results indicate that metastatic breast cancer cells amplify oxidative mitochondrial metabolism (OXPHOS) and that adjacent stromal cells are glycolytic and lack detectable mitochondria. Glycolytic stromal cells included cancer-associated fibroblasts, adipocytes and inflammatory cells. Double labeling experiments with glycolytic (MCT4) and oxidative (TO MM20 or COX) markers directly shows that at least two different metabolic compartments co-exist, side-by-side, within primary tumors and their metastases. Since cancer-associated immune cells appeared glycolytic, this observation may also explain how inflammation literally "fuels" tumor progression and metastatic dissemination, by "feeding" mitochondrial metabolism in cancer cells. Finally, MCT4(+) and TO MM20(-) "glycolytic" cancer cells were rarely observed, indicating that the conventional "Warburg effect" does not frequently occur in cancer-positive lymph node metastases.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Glicólise , Linfonodos/metabolismo , Metástase Linfática , Mitocôndrias/metabolismo , Biomarcadores Tumorais , Linhagem Celular Tumoral , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Humanos , Linfonodos/patologia , Proteínas de Membrana Transportadoras , Mitocôndrias/patologia , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Transportadores de Ácidos Monocarboxílicos/imunologia , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/imunologia , Proteínas Musculares/metabolismo , Estresse Oxidativo , Receptores de Superfície Celular , Células Estromais/metabolismo , Células Estromais/patologia
10.
Cell Cycle ; 11(6): 1108-17, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22313602

RESUMO

We have recently proposed a new model of cancer metabolism to explain the role of aerobic glycolysis and L-lactate production in fueling tumor growth and metastasis. In this model, cancer cells secrete hydrogen peroxide (H2O2), initiating oxidative stress and aerobic glycolysis in the tumor stroma. This, in turn, drives L-lactate secretion from cancer-associated fibroblasts. Secreted L-lactate then fuels oxidative mitochondrial metabolism (OXPHOS) in epithelial cancer cells, by acting as a paracrine onco-metabolite. We have previously termed this type of two-compartment tumor metabolism the "Reverse Warburg Effect," as aerobic glycolysis takes place in stromal fibroblasts, rather than epithelial cancer cells. Here, we used MCT4 immuno-staining of human breast cancer tissue microarrays (TMAs; > 180 triple-negative patients) to directly assess the prognostic value of the "Reverse Warburg Effect." MCT4 expression is a functional marker of hypoxia, oxidative stress, aerobic glycolysis, and L-lactate efflux. Remarkably, high stromal MCT4 levels (score = 2) were specifically associated with decreased overall survival (< 18% survival at 10 y post-diagnosis). In contrast, patients with absent stromal MCT4 expression (score = 0), had 10-y survival rates of ~97% (p-value < 10 (-32) ). High stromal levels of MCT4 were strictly correlated with a loss of stromal Cav-1 (p-value < 10 (-14) ), a known marker of early tumor recurrence and metastasis. In fact, the combined use of stromal Cav-1 and stromal MCT4 allowed us to more precisely identify high-risk triple-negative breast cancer patients, consistent with the goal of individualized risk-assessment and personalized cancer treatment. However, epithelial MCT4 staining had no prognostic value, indicating that the "conventional" Warburg effect does not predict clinical outcome. Thus, the "Reverse Warburg Effect" or "parasitic" energy-transfer is a key determinant of poor overall patient survival. As MCT4 is a druggable-target, MCT4 inhibitors should be developed for the treatment of aggressive breast cancers, and possibly other types of human cancers. Similarly, we discuss how stromal MCT4 could be used as a biomarker for identifying high-risk cancer patients that could likely benefit from treatment with FDA-approved drugs or existing MCT-inhibitors (such as, AR-C155858, AR-C117977, and AZD-3965).


Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias da Mama/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Células Estromais/metabolismo , Adulto , Idoso , Biomarcadores , Neoplasias da Mama/patologia , Caveolina 1/metabolismo , Estudos de Coortes , Epitélio/metabolismo , Epitélio/patologia , Feminino , Fibroblastos/metabolismo , Glicólise , Humanos , Peróxido de Hidrogênio/metabolismo , Imunoensaio/métodos , Estimativa de Kaplan-Meier , Ácido Láctico/metabolismo , Pessoa de Meia-Idade , Gradação de Tumores , Fosforilação Oxidativa , Estresse Oxidativo , Valor Preditivo dos Testes , Medição de Risco , Fatores de Risco , Coloração e Rotulagem , Células Estromais/patologia
11.
Cell Cycle ; 10(11): 1772-83, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21558814

RESUMO

Recently, we proposed a new mechanism for understanding the Warburg effect in cancer metabolism. In this new paradigm, cancer-associated fibroblasts undergo aerobic glycolysis, and extrude lactate to "feed" adjacent cancer cells, which then drives mitochondrial biogenesis and oxidative mitochondrial metabolism in cancer cells. Thus, there is vectorial transport of energy-rich substrates from the fibroblastic tumor stroma to anabolic cancer cells. A prediction of this hypothesis is that cancer-associated fibroblasts should express MCT4, a mono-carboxylate transporter that has been implicated in lactate efflux from glycolytic muscle fibers and astrocytes in the brain. To address this issue, we co-cultured MCF7 breast cancer cells with normal fibroblasts. Interestingly, our results directly show that breast cancer cells specifically induce the expression of MCT4 in cancer-associated fibroblasts; MCF7 cells alone and fibroblasts alone, both failed to express MCT4. We also show that the expression of MCT4 in cancer-associated fibroblasts is due to oxidative stress, and can be prevented by pre-treatment with the anti-oxidant N-acetyl-cysteine. In contrast to our results with MCT4, we see that MCT1, a transporter involved in lactate uptake, is specifically upregulated in MCF7 breast cancer cells when co-cultured with fibroblasts. Virtually identical results were also obtained with primary human breast cancer samples. In human breast cancers, MCT4 selectively labels the tumor stroma, e.g., the cancer-associated fibroblast compartment. Conversely, MCT1 was selectively expressed in the epithelial cancer cells within the same tumors. Functionally, we show that overexpression of MCT4 in fibroblasts protects both MCF7 cancer cells and fibroblasts against cell death, under co-culture conditions. Thus, we provide the first evidence for the existence of a stromal-epithelial lactate shuttle in human tumors, analogous to the lactate shuttles that are essential for the normal physiological function of muscle tissue and brain. These data are consistent with the "reverse Warburg effect," which states that cancer-associated fibroblasts undergo aerobic glycolysis, thereby producing lactate, which is utilized as a metabolic substrate by adjacent cancer cells. In this model, "energy transfer" or "metabolic-coupling" between the tumor stroma and epithelial cancer cells "fuels" tumor growth and metastasis, via oxidative mitochondrial metabolism in anabolic cancer cells. Most importantly, our current findings provide a new rationale and novel strategy for anti-cancer therapies, by employing MCT inhibitors.


Assuntos
Neoplasias da Mama/metabolismo , Fibroblastos/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Estresse Oxidativo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Células Epiteliais , Feminino , Humanos , Lactatos/metabolismo , Células Estromais
12.
Endocrinology ; 150(11): 5163-70, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19797118

RESUMO

The human monocarboxylate transporter 8 (hMCT8) protein mediates transport of thyroid hormone across the plasma membrane. Association of hMCT8 mutations with severe psychomotor retardation and disturbed thyroid hormone levels has established its physiological relevance, but little is still known about the basic properties of hMCT8. In this study we present evidence that hMCT8 does not form heterodimers with the ancillary proteins basigin, embigin, or neuroplastin, unlike other MCTs. In contrast, it is suggested that MCT8 exists as monomer and homodimer in transiently and stably transfected cells. Apparently hMCT8 forms stable dimers because the complex is resistant to denaturing conditions and dithiothreitol. Cotransfection of wild-type hMCT8 with a mutant lacking amino acids 267-360 resulted in formation of homo-and heterodimers of the variants, indicating that transmembrane domains 4-6 are not involved in the dimerization process. Furthermore, we explored the structural and functional role of the 10 Cys residues in hMCT8. All possible Cys>Ala mutants did not behave differently from wild-type hMCT8 in protein expression, cross-linking experiments with HgCl(2) and transport function. Our findings indicate that individual Cys residues are not important for the function of hMCT8 or suggest that hMCT8 has other yet-undiscovered functions in which cysteines play an essential role.


Assuntos
Transportadores de Ácidos Monocarboxílicos/química , Sequência de Aminoácidos , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Humanos , Camundongos , Dados de Sequência Molecular , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Mutação , Multimerização Proteica , Estrutura Terciária de Proteína , Simportadores , Hormônios Tireóideos/metabolismo
13.
Am J Physiol Cell Physiol ; 296(3): C414-21, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19073896

RESUMO

Monocarboxylate transporter (MCT) 4 is a heteromeric proton-coupled lactate transporter that is noncovalently linked to the extracellular matrix metalloproteinase inducer CD147 and is typically expressed in glycolytic tissues. There is increasing evidence to suggest that ion transporters are part of macromolecular complexes involved in regulating beta(1)-integrin adhesion and cell movement. In the present study we examined whether MCTs play a role in cell migration through their interaction with beta(1)-integrin. Using reciprocal coimmunoprecipitation assays, we found that beta(1)-integrin selectively associated with MCT4 in ARPE-19 and MDCK cells, two epithelial cell lines that express both MCT1 and MCT4. In polarized monolayers of ARPE-19 cells, MCT4 and beta(1)-integrin colocalized to the basolateral membrane, while both proteins were found in the leading edge lamellapodia of migrating cells. In scratch-wound assays, MCT4 knockdown slowed migration and increased focal adhesion size. In contrast, silencing MCT1 did not alter the rate of cell migration or focal adhesion size. Taken together, our findings suggest that the specific interaction of MCT4 with beta(1)-integrin may regulate cell migration through modulation of focal adhesions.


Assuntos
Movimento Celular , Células Epiteliais/metabolismo , Integrina beta1/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Cicatrização , Animais , Basigina/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Polaridade Celular , Cães , Adesões Focais/metabolismo , Humanos , Imunoprecipitação , Transportadores de Ácidos Monocarboxílicos/genética , Proteínas Musculares/genética , Transporte Proteico , Pseudópodes/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo
14.
Mol Vis ; 14: 1414-28, 2008 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-18682805

RESUMO

PURPOSE: Phenotypic transformation of retinal pigment epithelial (RPE) cells contributes to the onset and progression of ocular proliferative disorders such as proliferative vitreoretinopathy (PVR). The formation of epiretinal membranes in PVR may involve an epithelial-mesenchymal transformation (EMT) of RPE cells as part of an aberrant wound healing response. While the underlying mechanism remains unclear, this likely involves changes in RPE cell gene expression under the control of specific transcription factors (TFs). Thus, the purpose of the present study was to identify TFs that may play a role in this process. METHODS: Regulatory regions of genes that are differentially regulated during phenotypic transformation of ARPE-19 cells, a human RPE cell line, were subjected to computational analysis using the promoter analysis and interaction network toolset (PAINT). The PAINT analysis was used to identify transcription response elements (TREs) statistically overrepresented in the promoter and first intron regions of two reciprocally regulated RPE gene clusters, across four species including the human genome. These TREs were then used to construct transcriptional regulatory network models of the two RPE gene clusters. The validity of these models was then tested using RT-PCR to detect differential expression of the corresponding TF mRNAs during RPE differentiation in both undifferentiated and differentiated ARPE-19 and primary chicken RPE cell cultures. RESULTS: The computational analysis resulted in the successful identification of specific transcription response elements (TREs) and their cognate TFs that are candidates for serving as nodes in a transcriptional regulatory network regulating EMT in RPE cells. The models predicted TFs whose differential expression during RPE EMT was successfully verified by reverse transcriptase polymerase chain reaction (RT-PCR) analysis, including Oct-1, hepatocyte nuclear factor 1 (HNF-1), similar to mothers against decapentaplegic 3 (SMAD3), transcription factor E (TFE), core binding factor, erythroid transcription factor-1 (GATA-1), interferon regulatory factor-1 (IRF), natural killer homeobox 3A (NKX3A), Sterol regulatory element binding protein-1 (SREBP-1), and lymphocyte enhancer factor-1 (LEF-1). CONCLUSIONS: These studies successfully applied computational modeling and biochemical verification to identify biologically relevant transcription factors that are likely to regulate RPE cell phenotype and pathological changes in RPE in response to diseases or trauma. These TFs may provide potential therapeutic targets for the prevention and treatment of ocular proliferative disorders such as PVR.


Assuntos
Epitélio/metabolismo , Redes Reguladoras de Genes/genética , Mesoderma/metabolismo , Epitélio Pigmentado Ocular/metabolismo , Animais , Diferenciação Celular , Linhagem Celular Transformada , Galinhas , Sequência Conservada , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Evolução Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Modelos Genéticos , Família Multigênica , Filogenia , Epitélio Pigmentado Ocular/citologia , Reprodutibilidade dos Testes , Elementos de Resposta/genética , Especificidade da Espécie , Fatores de Transcrição , Transcrição Gênica
15.
Cancer Res ; 67(9): 4182-9, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17483329

RESUMO

Metastatic cancer cells increase glucose consumption and metabolism via glycolysis, producing large quantities of lactate. Recent work has shown that lactate efflux is mediated by monocarboxylate transporters (MCT), which are composed of a catalytic unit (MCT) and an accessory subunit (CD147), comprising the functional lactate transporter. CD147, an extracellular matrix metalloproteinase (MMP) inducer, is highly expressed in metastatic cancer cells. Because aerobic glycolysis is a hallmark of metastatic cancer, we examined whether increases in CD147 expression were linked to MCT expression in MDA-MB-231, a highly metastatic breast cancer cell line. MCT4 mRNA and protein expression were increased in MDA-MB-231 cells compared with cells derived from normal mammary tissue. MCT4 colocalized with CD147 in the plasma membrane and in membrane blebs shed from the cell surface. Small interfering RNA-mediated silencing of MCT4 impaired the maturation and trafficking of CD147 to the cell surface, resulting in accumulation of CD147 in the endoplasmic reticulum. Silencing MCT4 also resulted in fewer membrane blebs and decreased migration of MDA-MB-231 cells in vitro. Knockdown of CD147 resulted in loss of MCT4 in the plasma membrane and accumulation of the transporter in endolysosomes. These studies establish for the first time that increased expression of CD147 in metastatic cancer cells is coupled to the up-regulation of MCT4. The synergistic activities of the MCT/CD147 complex could facilitate migration of tumor cells by CD147-mediated MMP induction and lactate-stimulated angiogenesis and hyaluronan production. These data provide a molecular link between two hallmarks of metastatic cancer: the glycolytic switch and increased expression of CD147.


Assuntos
Basigina/metabolismo , Neoplasias da Mama/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Basigina/biossíntese , Basigina/genética , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Movimento Celular/genética , Inativação Gênica , Células HL-60 , Humanos , Células K562 , Transportadores de Ácidos Monocarboxílicos/biossíntese , Transportadores de Ácidos Monocarboxílicos/genética , Proteínas Musculares/biossíntese , Proteínas Musculares/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Transfecção
16.
Am J Physiol Endocrinol Metab ; 285(6): E1223-9, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14607782

RESUMO

In thyroid cells, basal and TSH-stimulated glycolysis is associated with lactic acid efflux. In this report, we address whether monocarboxylate transporters (MCTs) are present in thyroid tissue for exporting excess lactic acid generated by aerobic glycolysis. Using immunostaining techniques, we show that MCT4 localizes with its accessory protein CD147 in the basolateral membrane of rat thyroid follicular cells. In cultured rat thyroid (FRTL-5) cells, MCT1 rather than MCT4 is expressed. CD147 colocalizes and coimmunoprecipitates with MCT1. TSH upregulates MCT1/CD147 expression as a function of time through a cAMP-dependent mechanism as forskolin reproduces the effect of TSH. TSH enhances protein expression of both MCT1 and CD147 in FRTL-5 cells. Whereas MCT1 protein expression is controlled at the level of transcription, CD147 protein expression is regulated by a posttranscriptional mechanism. Results of these studies suggest that hormone stimulation of lactate transport is mediated by regulating MCT1 transcription.


Assuntos
Antígenos CD , Antígenos de Neoplasias , Antígenos de Superfície , Proteínas Aviárias , Proteínas Sanguíneas , Regulação da Expressão Gênica/fisiologia , Glicoproteínas de Membrana/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Simportadores/metabolismo , Glândula Tireoide/citologia , Glândula Tireoide/metabolismo , Tireotropina/metabolismo , Animais , Basigina , Linhagem Celular , Masculino , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
17.
Invest Ophthalmol Vis Sci ; 44(4): 1716-21, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12657613

RESUMO

PURPOSE: To evaluate the expression and subcellular distribution of proton-coupled monocarboxylate transporters (MCTs) in human RPE in vivo and determine whether ARPE-19 cells retain the ability to express and differentially polarize these transporters. METHODS: Total RNA was prepared from human donor eyes and from ARPE-19 cell cultures. Expression of MCT transcripts was evaluated by RT-PCR amplification. Expression of MCT proteins in human RPE and ARPE-19 cells was evaluated by immunolocalization and Western blot analysis with isoform-specific anti-peptide antibodies. RESULTS: The expression of MCTs in human RPE was investigated by immunofluorescence analysis on frozen sections of human donor eyes. MCT1 antibody labeled the apical membrane of the RPE intensely, whereas MCT3 labeling was restricted to the basolateral membrane. MCT4 was detected in the neural retina but not in the RPE. ARPE-19 cells constitutively expressed MCT1 and MCT4 mRNAs. Expression of MCT3 mRNA increased over time as ARPE-19 cells established a differentiated phenotype. Western blot analysis revealed that ARPE-19 cells expressed high levels of MCT1 and MCT4 but very little MCT3 protein. Sections of differentiated ARPE-19 cells were labeled with MCT1, MCT4, and glucose transporter-1 antibodies. MCT1 was polarized to the apical membrane and MCT4 to the basolateral membrane, whereas GLUT1 was expressed in both membrane domains. CD147, which is necessary for targeting MCTs to the plasma membrane, was detected in the apical and basolateral membranes of human RPE in situ and ARPE-19 cells. CONCLUSIONS: These studies demonstrate for the first time that human RPE expresses two proton-coupled monocarboxylate transporters: MCT1 in the apical membrane and MCT3 in the basolateral membrane. The coordinated activities of these two transporters could facilitate the flux of lactate from the retina to the choroid. ARPE-19 cells express two MCT isoforms, polarized to different membrane domains: MCT1 to the apical membrane and MCT4 to the basolateral membrane. The polarized expression of MCTs in ARPE-19 demonstrates that these cells retain the cellular machinery necessary for transepithelial transport of lactate.


Assuntos
Antígenos CD , Antígenos de Neoplasias , Antígenos de Superfície , Proteínas Aviárias , Proteínas Sanguíneas , Proteínas de Transporte/metabolismo , Proteínas de Membrana Transportadoras , Transportadores de Ácidos Monocarboxílicos/metabolismo , Epitélio Pigmentado Ocular/metabolismo , Simportadores/metabolismo , Animais , Basigina , Western Blotting , Proteínas de Transporte/genética , Linhagem Celular , Membrana Celular/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Glicoproteínas de Membrana/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , RNA Mensageiro/metabolismo , Coelhos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Simportadores/genética
18.
Invest Ophthalmol Vis Sci ; 44(3): 1305-11, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12601063

RESUMO

PURPOSE: The neural retina expresses multiple monocarboxylate transporters (MCTs) that are likely to play a key role in the metabolism of the outer retina. Recently, it was reported that targeting of MCT1 and -4 to the plasma membrane requires association with 5A11/basigin (CD147). In the present study, the hypothesis that reduced amplitudes in the electroretinograms in the 5A11/basigin null mouse (Bsg(-/-)) may be linked to altered expression of MCTs was studied. METHODS: The expression and subcellular distribution of MCTs in Bsg(-/-) mice was analyzed by immunofluorescence microscopy with isoform-specific antibodies. Protein expression was analyzed by Western blot analysis, and mRNA expression was examined with RT-PCR. RESULTS: Immunofluorescence labeling of tissue sections from the Bsg(-/-) mice revealed a dramatic reduction in labeling with MCT antibodies. There was a loss of MCT1 labeling in the apical membrane of the RPE and in the neural retina. MCT3, which is expressed in the basolateral membrane of the RPE wild-type mouse, was expressed at very low levels in both the apical and basolateral membranes of the Bsg(-/-) mouse. There was no change in expression or distribution of the glucose transporter (GLUT)-1 in the RPE and retina of the Bsg(-/-) mouse. Western blot analysis of detergent-soluble lysates prepared from wild-type and Bsg(-/-) eyes confirmed that the levels of MCT1, MCT3, and MCT4 protein were severely reduced in Bsg(-/-) mice. RT-PCR analyses of mRNA levels from wild-type and Bsg(-/-) mice demonstrated that the MCT1 transcript was expressed at normal levels in Bsg(-/-) mice. CONCLUSIONS: In Bsg(-/-) mice, there is a severe reduction in accumulation of the MCT1 and -3 proteins in the RPE and a concomitant reduction in MCT1 and -4 in the neural retina supporting a role for 5A11/basigin in the targeting of these transporters to the plasma membrane. Decreased expression of MCT1 and -4 on the surfaces of Müller and photoreceptor cells may compromise energy metabolism in the outer retina, leading to abnormal photoreceptor cell function and degeneration.


Assuntos
Antígenos CD , Antígenos de Neoplasias , Antígenos de Superfície , Proteínas Aviárias , Proteínas Sanguíneas , Proteínas de Transporte/metabolismo , Glicoproteínas de Membrana/fisiologia , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Epitélio Pigmentado Ocular/metabolismo , Retina/metabolismo , Degeneração Retiniana/metabolismo , Simportadores/metabolismo , Animais , Basigina , Western Blotting , Proteínas de Transporte/genética , Técnica Indireta de Fluorescência para Anticorpo , Deleção de Genes , Proteínas de Membrana Transportadoras , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Transportadores de Ácidos Monocarboxílicos/genética , Proteínas Musculares/genética , Epitélio Pigmentado Ocular/patologia , RNA Mensageiro/metabolismo , Retina/patologia , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Simportadores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA