Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Respir Crit Care Med ; 203(1): 102-110, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32673075

RESUMO

Rationale: Obstructive sleep apnea is recurrent upper airway obstruction caused by a loss of upper airway muscle tone during sleep. The main goal of our study was to determine if designer receptors exclusively activated by designer drugs (DREADD) could be used to activate the genioglossus muscle as a potential novel treatment strategy for sleep apnea. We have previously shown that the prototypical DREADD ligand clozapine-N-oxide increased pharyngeal diameter in mice expressing DREADD in the hypoglossal nucleus. However, the need for direct brainstem viral injections and clozapine-N-oxide toxicity diminished translational potential of this approach, and breathing during sleep was not examined.Objectives: Here, we took advantage of our model of sleep-disordered breathing in diet-induced obese mice, retrograde properties of the adeno-associated virus serotype 9 (AAV9) viral vector, and the novel DREADD ligand J60.Methods: We administered AAV9-hSyn-hM3(Gq)-mCherry or control AAV9 into the genioglossus muscle of diet-induced obese mice and examined the effect of J60 on genioglossus activity, pharyngeal patency, and breathing during sleep.Measurements and Main Results: Compared with control, J60 increased genioglossus tonic activity by greater than sixfold and tongue uptake of 2-deoxy-2-[18F]fluoro-d-glucose by 1.5-fold. J60 increased pharyngeal patency and relieved upper airway obstruction during non-REM sleep.Conclusions: We conclude that following intralingual administration of AAV9-DREADD, J60 can activate the genioglossus muscle and improve pharyngeal patency and breathing during sleep.


Assuntos
Drogas Desenhadas/uso terapêutico , Nervo Hipoglosso/efeitos dos fármacos , Músculos Faríngeos/efeitos dos fármacos , Receptores de Droga/efeitos dos fármacos , Respiração/efeitos dos fármacos , Apneia Obstrutiva do Sono/tratamento farmacológico , Apneia Obstrutiva do Sono/fisiopatologia , Animais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos
2.
J Physiol ; 597(1): 151-172, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30285278

RESUMO

KEY POINTS: Leptin is a potent respiratory stimulant. A long functional isoform of leptin receptor, LepRb , was detected in the carotid body (CB), a key peripheral hypoxia sensor. However, the effect of leptin on minute ventilation (VE ) and the hypoxic ventilatory response (HVR) has not been sufficiently studied. We report that LepRb is present in approximately 74% of the CB glomus cells. Leptin increased carotid sinus nerve activity at baseline and in response to hypoxia in vivo. Subcutaneous infusion of leptin increased VE and HVR in C57BL/6J mice and this effect was abolished by CB denervation. Expression of LepRb in the carotid bodies of LepRb deficient obese db/db mice increased VE during wakefulness and sleep and augmented the HVR. We conclude that leptin acts on LepRb in the CBs to stimulate breathing and HVR, which may protect against sleep disordered breathing in obesity. ABSTRACT: Leptin is a potent respiratory stimulant. The carotid bodies (CB) express the long functional isoform of leptin receptor, LepRb , but the role of leptin in CB has not been fully elucidated. The objectives of the current study were (1) to examine the effect of subcutaneous leptin infusion on minute ventilation (VE ) and the hypoxic ventilatory response to 10% O2 (HVR) in C57BL/6J mice before and after CB denervation; (2) to express LepRb in CB of LepRb -deficient obese db/db mice and examine its effects on breathing during sleep and wakefulness and on HVR. We found that leptin enhanced carotid sinus nerve activity at baseline and in response to 10% O2 in vivo. In C57BL/6J mice, leptin increased VE from 1.1 to 1.5 mL/min/g during normoxia (P < 0.01) and from 3.6 to 4.7 mL/min/g during hypoxia (P < 0.001), augmenting HVR from 0.23 to 0.31 mL/min/g/Δ FIO2 (P < 0.001). The effects of leptin on VE and HVR were abolished by CB denervation. In db/db mice, LepRb expression in CB increased VE from 1.1 to 1.3 mL/min/g during normoxia (P < 0.05) and from 2.8 to 3.2 mL/min/g during hypoxia (P < 0.02), increasing HVR. Compared to control db/db mice, LepRb transfected mice showed significantly higher VE throughout non-rapid eye movement (20.1 vs. -27.7 mL/min respectively, P < 0.05) and rapid eye movement sleep (16.5 vs 23.4 mL/min, P < 0.05). We conclude that leptin acts in CB to augment VE and HVR, which may protect against sleep disordered breathing in obesity.


Assuntos
Corpo Carotídeo/fisiologia , Hipóxia/fisiopatologia , Leptina/fisiologia , Ventilação Pulmonar/fisiologia , Sono/fisiologia , Vigília/fisiologia , Animais , Leptina/sangue , Masculino , Camundongos Endogâmicos C57BL , Camundongos Obesos , Receptores para Leptina/fisiologia
3.
Front Neurol ; 9: 962, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30487776

RESUMO

Obstructive Sleep Apnea (OSA) is a prevalent condition and a major cause of morbidity and mortality in Western Society. The loss of motor input to the tongue and specifically to the genioglossus muscle during sleep is associated with pharyngeal collapsibility and the development of OSA. We applied a novel chemogenetic method to develop a mouse model of sleep disordered breathing Our goal was to reversibly silence neuromotor input to the genioglossal muscle using an adeno-associated viral vector carrying inhibitory designer receptors exclusively activated by designer drugs AAV5-hM4Di-mCherry (DREADD), which was delivered bilaterally to the hypoglossal nucleus in fifteen C57BL/6J mice. In the in vivo experiment, 4 weeks after the viral administration mice were injected with a DREADD ligand clozapine-N-oxide (CNO, i.p., 1mg/kg) or saline followed by a sleep study; a week later treatments were alternated and a second sleep study was performed. Inspiratory flow limitation was recognized by the presence of a plateau in mid-respiratory flow; oxyhemoglobin desaturations were defined as desaturations >4% from baseline. In the in vitro electrophysiology experiment, four males and three females of 5 days of age were used. Sixteen-nineteen days after DREADD injection brain slices of medulla were prepared and individual hypoglossal motoneurons were recorded before and after CNO application. Positive mCherry staining was detected in the hypoglossal nucleus in all mice confirming successful targeting. In sleep studies, CNO markedly increased the frequency of flow limitation n NREM sleep (from 1.9 ± 1.3% after vehicle injection to 14.2 ± 3.4% after CNO, p < 0.05) and REM sleep (from 22.3% ± 4.1% to 30.9 ± 4.6%, respectively, p < 0.05) compared to saline treatment, but there was no significant oxyhemoglobin desaturation or sleep fragmentation. Electrophysiology recording in brain slices showed that CNO inhibited firing frequency of DREADD-containing hypoglossal motoneurons. We conclude that chemogenetic approach allows to silence hypoglossal motoneurons in mice, which leads to sleep disordered breathing manifested by inspiratory flow limitation during NREM and REM sleep without oxyhemoglobin desaturation or sleep fragmentation. Other co-morbid factors, such as compromised upper airway anatomy, may be needed to achieve recurrent pharyngeal obstruction observed in OSA.

4.
Sci Rep ; 7: 44392, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28281681

RESUMO

Obstructive sleep apnea (OSA) is characterized by recurrent upper airway obstruction during sleep. OSA leads to high cardiovascular morbidity and mortality. The pathogenesis of OSA has been linked to a defect in neuromuscular control of the pharynx. There is no effective pharmacotherapy for OSA. The objective of this study was to determine whether upper airway patency can be improved using chemogenetic approach by deploying designer receptors exclusively activated by designer drug (DREADD) in the hypoglossal motorneurons. DREADD (rAAV5-hSyn-hM3(Gq)-mCherry) and control virus (rAAV5-hSyn-EGFP) were stereotactically administered to the hypoglossal nucleus of C57BL/6J mice. In 6-8 weeks genioglossus EMG and dynamic MRI of the upper airway were performed before and after administration of the DREADD ligand clozapine-N-oxide (CNO) or vehicle (saline). In DREADD-treated mice, CNO activated the genioglossus muscle and markedly dilated the pharynx, whereas saline had no effect. Control virus treated mice showed no effect of CNO. Our results suggest that chemogenetic approach can be considered as a treatment option for OSA and other motorneuron disorders.


Assuntos
Antipsicóticos/farmacologia , Clozapina/análogos & derivados , Vetores Genéticos/administração & dosagem , Nervo Hipoglosso/efeitos dos fármacos , Faringe/efeitos dos fármacos , Apneia Obstrutiva do Sono/terapia , Animais , Clozapina/farmacologia , Dependovirus/genética , Dependovirus/metabolismo , Modelos Animais de Doenças , Eletromiografia , Genes Reporter , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Nervo Hipoglosso/metabolismo , Nervo Hipoglosso/fisiopatologia , Injeções Intraventriculares , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Faringe/diagnóstico por imagem , Faringe/inervação , Faringe/metabolismo , Apneia Obstrutiva do Sono/diagnóstico por imagem , Apneia Obstrutiva do Sono/metabolismo , Apneia Obstrutiva do Sono/fisiopatologia , Técnicas Estereotáxicas , Proteína Vermelha Fluorescente
5.
Anesth Analg ; 123(6): 1611-1617, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27782940

RESUMO

BACKGROUND: Obesity causes multiorgan dysfunction, specifically metabolic abnormalities in the liver. Obese patients are opioid-sensitive and have high rates of respiratory complications after surgery. Obesity also has been shown to cause resistance to leptin, an adipose-derived hormone that is key in regulating hunger, metabolism, and respiratory stimulation. We hypothesized that obesity and leptin deficiency impair opioid pharmacokinetics (PK) independently of one another. METHODS: Morphine PK were characterized in C57BL/6J wild-type (WT), diet-induced obese (DIO), and leptin-deficient (ob/ob) mice, and in ob/ob mice given leptin-replacement (LR) therapy. WT mice received several dosing regimens of morphine. Obese mice (30 g) received one 80 mg/kg bolus of morphine. Blood was collected at fixed times after morphine injection for quantification of plasma morphine and morphine 3-glucuronide (M3G) levels. PK parameters used to evaluate morphine metabolism included area-under the curve (AUC150), maximal morphine concentration (CMAX), and M3G-to-morphine ratio, and drug elimination was determined by clearance (Cl/F), volume of distribution, and half-life (T1/2). PK parameters were compared between mouse groups by the use of 1-way analysis of variance, with P values less than .05 considered significant. RESULTS: DIO compared with WT mice had significantly decreased morphine metabolism with lower M3G-to-morphine ratio (mean difference [MD]: -4.9; 95% confidence interval [CI]: -8.8 to -0.9) as well as a decreased Cl/F (MD: -4.0; 95% CI: -8.9 to -0.03) Ob/ob compared with WT mice had a large increase in morphine exposure with a greater AUC150 (MD: 980.4; 95% CI: 630.1-1330.6), CMAX (MD: 6.8; 95% CI: 2.7-10.9), and longer T1/2 (MD: 23.1; 95% CI: 10.5-35.6), as well as a decreased Cl/F (MD: -7.0; 95% CI: -11.6 to -2.7). Several PK parameters were significantly greater in ob/ob compared with DIO mice, including AUC150 (MD: 636.4; 95% CI: 207.4-1065.4), CMAX (MD: 5.3; 95% CI: 3.2-10.3), and T1/2 (MD: 18.3; 95% CI: 2.8-33.7). When leptin was replaced in ob/ob mice, PK parameters began to approach DIO and WT levels. LR compared with ob/ob mice had significant decreases in AUC150 (MD: -779.9; 95% CI: -1229.8 to -330), CMAX (MD: -6.1; 95% CI: -11.4 to -0.9), and T1/2 (MD: -19; 95% CI: -35.1 to -2.8). Metabolism increased with LR, with LR mice having a greater M3G-to-morphine ratio compared with DIO (MD: 5.3; 95% CI: 0.3-10.4). CONCLUSIONS: Systemic effects associated with obesity decrease morphine metabolism and excretion. A previous study from our laboratory demonstrated that obesity and leptin deficiency decrease the sensitivity of central respiratory control centers to carbon dioxide. Obesity and leptin deficiency substantially decreased morphine metabolism and clearance, and replacing leptin attenuated the PK changes associated with leptin deficiency, suggesting leptin has a direct role in morphine metabolism.


Assuntos
Analgésicos Opioides/farmacocinética , Leptina/deficiência , Morfina/farmacocinética , Obesidade/metabolismo , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/sangue , Análise de Variância , Animais , Área Sob a Curva , Dieta Hiperlipídica , Modelos Animais de Doenças , Predisposição Genética para Doença , Meia-Vida , Leptina/genética , Masculino , Taxa de Depuração Metabólica , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Modelos Biológicos , Morfina/administração & dosagem , Morfina/sangue , Derivados da Morfina , Obesidade/sangue , Obesidade/genética , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA