Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Signal ; 15(718): eabj1737, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35077199

RESUMO

The Escherichia coli chemoreceptor array is a supramolecular assembly that enables cells to respond to extracellular cues dynamically and with great precision and sensitivity. In the array, transmembrane receptors organized as trimers of dimers are connected at their cytoplasmic tips by hexameric rings of alternating subunits of the kinase CheA and the scaffolding protein CheW (CheA-CheW rings). Interactions of CheW molecules with the members of receptor trimers not directly bound to CheA-CheW rings may lead to the formation of hexameric CheW rings in the chemoreceptor array. Here, we detected such CheW rings with a cellular cysteine-directed cross-linking assay and explored the requirements for their formation and their participation in array assembly. We found that CheW ring formation varied with cellular CheW abundance, depended on the presence of receptors capable of a trimer-of-dimers arrangement, and did not require CheA. Cross-linking studies of a CheA~CheW fusion protein incapable of forming homomeric CheW oligomers demonstrated that CheW rings were not essential for the assembly of CheA-containing arrays. Förster resonance energy transfer (FRET)-based kinase assays of arrays containing variable amounts of CheW rings revealed that CheW rings enhanced the cooperativity and the sensitivity of the responses to attractants. We propose that six-membered CheW rings provide the additional interconnectivity required for optimal signaling and gradient tracking performance by chemosensory arrays.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Quimiotaxia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Histidina Quinase/metabolismo , Proteínas Quimiotáticas Aceptoras de Metil/genética
2.
J Bacteriol ; 201(23)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31501279

RESUMO

Escherichia coli chemotaxis relies on control of the autophosphorylation activity of the histidine kinase CheA by transmembrane chemoreceptors. Core signaling units contain two receptor trimers of dimers, one CheA homodimer, and two monomeric CheW proteins that couple CheA activity to receptor control. Core signaling units appear to operate as two-state devices, with distinct kinase-on and kinase-off CheA output states whose structural nature is poorly understood. A recent all-atom molecular dynamic simulation of a receptor core unit revealed two alternative conformations, "dipped" and "undipped," for the ATP-binding CheA.P4 domain that could be related to kinase activity states. To explore possible signaling roles for the dipped CheA.P4 conformation, we created CheA mutants with amino acid replacements at residues (R265, E368, and D372) implicated in promoting the dipped conformation and examined their signaling consequences with in vivo Förster resonance energy transfer (FRET)-based kinase assays. We used cysteine-directed in vivo cross-linking reporters for the dipped and undipped conformations to assess mutant proteins for these distinct CheA.P4 domain configurations. Phenotypic suppression analyses revealed functional interactions among the conformation-controlling residues. We found that structural interactions between R265, located at the N terminus of the CheA.P3 dimerization domain, and E368/D372 in the CheA.P4 domain played a critical role in stabilizing the dipped conformation and in producing kinase-on output. Charge reversal replacements at any of these residues abrogated the dipped cross-linking signal, CheA kinase activity, and chemotactic ability. We conclude that the dipped conformation of the CheA.P4 domain is critical to the kinase-active state in core signaling units.IMPORTANCE Regulation of CheA kinase in chemoreceptor arrays is critical for Escherichia coli chemotaxis. However, to date, little is known about the CheA conformations that lead to the kinase-on or kinase-off states. Here, we explore the signaling roles of a distinct conformation of the ATP-binding CheA.P4 domain identified by all-atom molecular dynamics simulation. Amino acid replacements at residues predicted to stabilize the so-called "dipped" CheA.P4 conformation abolished the kinase activity of CheA and its ability to support chemotaxis. Our findings indicate that the dipped conformation of the CheA.P4 domain is critical for reaching the kinase-active state in chemoreceptor signaling arrays.


Assuntos
Quimiotaxia/genética , Proteínas de Escherichia coli/química , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Histidina Quinase/química , Proteínas Quimiotáticas Aceptoras de Metil/química , Transdução de Sinais/genética , Motivos de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Escherichia coli/enzimologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Histidina Quinase/genética , Histidina Quinase/metabolismo , Proteínas Quimiotáticas Aceptoras de Metil/genética , Proteínas Quimiotáticas Aceptoras de Metil/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Fosforilação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Eletricidade Estática
3.
Int J Med Microbiol ; 305(1): 157-69, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25543170

RESUMO

Streptococcus pneumoniae is a major human pathogen that can survive to stress conditions, such as the acidic environment of inflammatory foci, and tolerates lethal pH through a mechanism known as the acid tolerance response. We previously described that S. pneumoniae activates acidic-stress induced lysis in response to acidified environments, favoring the release of cell wall compounds, DNA and virulence factors. Here, we demonstrate that F(0)F(1)-ATPase is involved in the response to acidic stress. Chemical inhibitors (DCCD, optochin) of this proton pump repressed the ATR induction, but caused an increased ASIL. Confirming these findings, mutants of the subunit c of this enzyme showed the same phenotypes as inhibitors. Importantly, we demonstrated that F(0)F(1)-ATPase and ATR are necessary for the intracellular survival of the pneumococcus in macrophages. Alternatively, a screening of two-component system (TCS) mutants showed that ATR and survival in pneumocytes were controlled in contrasting ways by ComDE and CiaRH, which had been involved in the ASIL mechanism. Briefly, CiaRH was essential for ATR (ComE represses activation) whereas ComE was necessary for ASIL (CiaRH protects against induction). They did not regulate F0F1-ATPase expression, but control LytA expression on the pneumococcal surface. These results suggest that both TCSs and F(0)F(1)-ATPase control a stress response and decide between a survival or a suicide mechanism by independent pathways, either in vitro or in pneumocyte cultures. This biological model contributes to the current knowledge about bacterial response under stress conditions in host tissues, where pathogens need to survive in order to establish infections.


Assuntos
Viabilidade Microbiana , ATPases Translocadoras de Prótons/metabolismo , Transdução de Sinais , Streptococcus pneumoniae/fisiologia , Estresse Fisiológico , Ácidos/toxicidade , Células Epiteliais Alveolares/microbiologia , Animais , Linhagem Celular , Técnicas de Inativação de Genes , Humanos , Concentração de Íons de Hidrogênio , Macrófagos/microbiologia , Camundongos , ATPases Translocadoras de Prótons/genética , Streptococcus pneumoniae/genética
4.
J Antimicrob Chemother ; 62(5): 973-7, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18684700

RESUMO

OBJECTIVES: The aim of this work was to study the effect of subinhibitory concentrations of penicillin, chloramphenicol and erythromycin on the mutation rate of Streptococcus pneumoniae. METHODS: The mutation rate to rifampicin and optochin resistance was estimated using fluctuation analysis in three capsulated S. pneumoniae strains, cultured both with and without different subinhibitory antibiotic concentrations. The atpAC and rpoB mutations that conferred optochin and rifampicin resistance, respectively, were identified by DNA sequencing. RESULTS: The exposure to subinhibitory concentrations of penicillin increased the mutation rate (expressed as mutation per cell division) to optochin resistance between 2.1- and 3.1-fold for all three strains studied. In contrast, the rifampicin resistance assay showed no significant variations. To analyse the putative cause of the different responses between the optochin and rifampicin tests, mutations that conferred resistance in both cases were analysed. The difference may be explained by the genetic nature of the atpAC mutations, mostly transversions, which are not efficiently repaired by the HexAB mismatch repair system. CONCLUSIONS: We demonstrated that subinhibitory concentrations of penicillin significantly increased the mutation rate of S. pneumoniae, suggesting that exposure to this antibiotic could help this pathogen to acquire mutations that confer resistance to other antibiotics. The optochin test was useful to detect this phenomenon and it should be considered for further mutability analysis in S. pneumoniae.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Mutagênicos/farmacologia , Mutação de Sentido Incorreto , Penicilinas/farmacologia , Quinina/análogos & derivados , Streptococcus pneumoniae/efeitos dos fármacos , Proteínas de Bactérias/genética , Análise Mutacional de DNA , DNA Bacteriano/química , DNA Bacteriano/genética , RNA Polimerases Dirigidas por DNA/genética , Humanos , Dados de Sequência Molecular , ATPases Translocadoras de Prótons/genética , Quinina/farmacologia , Análise de Sequência de DNA , Streptococcus pneumoniae/genética
5.
J Clin Microbiol ; 46(6): 1930-4, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18417665

RESUMO

Optochin susceptibility is a key test used for pneumococcal diagnosis, but optochin-resistant (Opt(r)) pneumococci have been reported in the last 2 decades. In this work, we characterized eight Opt(r) clinical strains which presented a new mutation, G47V, a predominant A49S mutation (recently reported in Brazil) and A49T. These mutations were found in the c subunit of the F(0)F(1) ATPase encoded by the atpC gene, and W206C was found in the a subunit encoded by the atpA gene. The Opt(r) clinical isolates were analyzed by BOX PCR, multilocus sequence typing, and serotype and antimicrobial resistance profiles, and they showed no epidemiological relationship. To characterize the Opt(r) mutations that could emerge among clinical strains, we studied a pool of spontaneous Opt(r) colonies obtained in vitro from the virulent D39 strain. We compared the atpAC mutations of these Opt(r) pneumococci (with or without passage through C57BL/6 mice) with those described in the clinical isolates. This analysis revealed three new mutations, G47V and L26M in the c subunit and L184S in the a subunit. Most of the mutations identified in the laboratory-generated Opt(r) strains were also found in clinical strains, with the exception of the L26M and L184S mutations, and we suppose that both mutations could emerge among invasive strains in the future. Considering that atpAC are essential genes, we propose that all spontaneous mutations that confer in vitro optochin resistance would not present severe physiological alterations in S. pneumoniae and may be carried by circulating pneumococcal strains.


Assuntos
Farmacorresistência Bacteriana , Quinina/análogos & derivados , Inoculações Seriadas , Streptococcus pneumoniae , Animais , Antibacterianos/farmacologia , Argentina , Proteínas de Bactérias/genética , Criança , Pré-Escolar , Farmacorresistência Bacteriana/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Mutação , Infecções Pneumocócicas/microbiologia , ATPases Translocadoras de Prótons/genética , Quinina/farmacologia , Análise de Sequência de DNA , Streptococcus pneumoniae/classificação , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/isolamento & purificação , Streptococcus pneumoniae/patogenicidade , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA