Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543184

RESUMO

Lactoferrins and lactoferrin-derived peptides display numerous functions linked to innate immunity in mammalians, spanning from antimicrobial to anti-inflammatory and immunomodulatory actions, and even demonstrate antitumor properties. To date, the proposed mechanisms for their biological actions are varied, although the molecular basis that governs lactoferrin interactions with molecular targets has been clarified only in a limited number of specific cases. However, key in silico methods have recently moved the topic to the fore, thus greatly expanding the possibilities of large-scale investigations on macromolecular interactions involving lactoferrins and their molecular targets. This review aims to summarize the current knowledge on the structural determinants that drive lactoferrin recognition of molecular targets, with primary focus on the mechanisms of activity against bacteria and viruses. The understanding of the structural details of lactoferrins' interaction with their molecular partners is in fact a crucial goal for the development of novel pharmaceutical products.

2.
Protein Sci ; 32(12): e4819, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37883077

RESUMO

Ferritin, a naturally occurring iron storage protein, has gained significant attention as a drug delivery platform due to its inherent biocompatibility and capacity to encapsulate therapeutic agents. In this study, we successfully genetically engineered human H ferritin by incorporating 4 or 6 tryptophan residues per subunit, strategically oriented towards the inner cavity of the nanoparticle. This modification aimed to enhance the encapsulation of hydrophobic drugs into the ferritin cage. Comprehensive characterization of the mutants revealed that only the variant carrying four tryptophan substitutions per subunit retained the ability to disassemble and reassemble properly. As a proof of concept, we evaluated the loading capacity of this mutant with ellipticine, a natural hydrophobic indole alkaloid with multimodal anticancer activity. Our data demonstrated that this specific mutant exhibited significantly higher efficiency in loading ellipticine compared to human H ferritin. Furthermore, to evaluate the versatility of this hydrophobicity-enhanced ferritin nanoparticle as a drug carrier, we conducted a comparative study by also encapsulating doxorubicin, a commonly used anticancer drug. Subsequently, we tested both ellipticine and doxorubicin-loaded nanoparticles on a promyelocytic leukemia cell line, demonstrating efficient uptake by these cells and resulting in the expected cytotoxic effect.


Assuntos
Antineoplásicos , Elipticinas , Nanopartículas , Humanos , Ferritinas/genética , Ferritinas/química , Apoferritinas/genética , Triptofano , Antineoplásicos/farmacologia , Antineoplásicos/química , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/química , Doxorrubicina/farmacologia , Doxorrubicina/química , Nanopartículas/química , Interações Hidrofóbicas e Hidrofílicas , Linhagem Celular Tumoral
3.
Front Mol Biosci ; 10: 1332359, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38250735

RESUMO

The development of methods able to modulate the binding affinity between proteins and peptides is of paramount biotechnological interest in view of a vast range of applications that imply designed polypeptides capable to impair or favour Protein-Protein Interactions. Here, we applied a peptide design algorithm based on shape complementarity optimization and electrostatic compatibility and provided the first experimental in vitro proof of the efficacy of the design algorithm. Focusing on the interaction between the SARS-CoV-2 Spike Receptor-Binding Domain (RBD) and the human angiotensin-converting enzyme 2 (ACE2) receptor, we extracted a 23-residues long peptide that structurally mimics the major interacting portion of the ACE2 receptor and designed in silico five mutants of such a peptide with a modulated affinity. Remarkably, experimental KD measurements, conducted using biolayer interferometry, matched the in silico predictions. Moreover, we investigated the molecular determinants that govern the variation in binding affinity through molecular dynamics simulation, by identifying the mechanisms driving the different values of binding affinity at a single residue level. Finally, the peptide sequence with the highest affinity, in comparison with the wild type peptide, was expressed as a fusion protein with human H ferritin (HFt) 24-mer. Solution measurements performed on the latter constructs confirmed that peptides still exhibited the expected trend, thereby enhancing their efficacy in RBD binding. Altogether, these results indicate the high potentiality of this general method in developing potent high-affinity vectors for hindering/enhancing protein-protein associations.

4.
FEBS J ; 289(6): 1625-1649, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34694685

RESUMO

De novo thymidylate synthesis is a crucial pathway for normal and cancer cells. Deoxythymidine monophosphate (dTMP) is synthesized by the combined action of three enzymes: serine hydroxymethyltransferase (SHMT1), dihydrofolate reductase (DHFR) and thymidylate synthase (TYMS), with the latter two being targets of widely used chemotherapeutics such as antifolates and 5-fluorouracil. These proteins translocate to the nucleus after SUMOylation and are suggested to assemble in this compartment into the thymidylate synthesis complex. We report the intracellular dynamics of the complex in cancer cells by an in situ proximity ligation assay, showing that it is also detected in the cytoplasm. This result indicates that the role of the thymidylate synthesis complex assembly may go beyond dTMP synthesis. We have successfully assembled the dTMP synthesis complex in vitro, employing tetrameric SHMT1 and a bifunctional chimeric enzyme comprising human thymidylate synthase and dihydrofolate reductase. We show that the SHMT1 tetrameric state is required for efficient complex assembly, indicating that this aggregation state is evolutionarily selected in eukaryotes to optimize protein-protein interactions. Lastly, our results regarding the activity of the complete thymidylate cycle in vitro may provide a useful tool with respect to developing drugs targeting the entire complex instead of the individual components.


Assuntos
Timidina Monofosfato , Timidilato Sintase , Núcleo Celular/metabolismo , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/metabolismo , Humanos , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Timidina Monofosfato/metabolismo , Timidilato Sintase/genética , Timidilato Sintase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA