RESUMO
Tomatoes are frequently challenged by various pathogens, among which Phytophthora capsici (P. capsici) is a destructive soil-borne pathogen that seriously threatens the safe production of tomatoes. Plant growth-promoting rhizobacteria (PGPR) positively induced plant resistance against multiple pathogens. However, little is known about the role and regulatory mechanism of PGPR in tomato resistance to P. capsici. Here, we identified a new strain Serratia plymuthica (S. plymuthica), HK9-3, which has a significant antibacterial effect on P. capsici infection. Meanwhile, stable colonization in roots by HK9-3, even under P. capsici infection, improved tomato growth parameters, root system architecture, photosynthetic capacity, and boosted biomass. Importantly, HK9-3 colonization significantly alleviated the damage caused by P. capsici infection through enhancing ROS scavenger ability and inducing antioxidant defense system and pathogenesis-related (PR) proteins in leaves, as evidenced by elevating the activities of peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), and chitinase, ß-1,3-glucanase, and increasing the transcripts of POD, SOD, CAT, APX1, PAL1, PAL2, PAL5, PPO2, CHI17 and ß-1,3-glucanase genes. Notably, HK9-3 colonization not only effectively improved soil microecology and soil fertility, but also significantly enhanced fruit yield by 44.6% and improved quality. Our study presents HK9-3 as a promising and effective solution for controlling P. capsici infection in tomato cultivation while simultaneously promoting plant growth and increasing yield, which may have implications for P. capsici control in vegetable production.
Assuntos
Resistência à Doença , Phytophthora , Doenças das Plantas , Rizosfera , Serratia , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Solanum lycopersicum/fisiologia , Solanum lycopersicum/genética , Phytophthora/fisiologia , Serratia/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Antioxidantes/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologiaRESUMO
Pyroxasulfone (PYS) is an isoxazole herbicide favored for its high activity. However, the metabolic mechanism of PYS in tomato plants and the response mechanism of tomato to PYS are still lacking. In this study, it was found that tomato seedlings had a strong ability to absorb and translocate PYS from roots to shoots. The highest accumulation of PYS was in the apex tissue of the tomato shoots. Using UPLC-MS/MS, five metabolites of PYS were detected and identified in tomato plants, and their relative contents in different parts of tomato plants varied greatly. The serine conjugate, DMIT [5, 5-dimethyl-4, 5-dihydroisoxazole-3-thiol (DMIT)] &Ser, was the most abundant metabolites of PYS in tomato plants. In tomato plants, the conjugation of thiol-containing metabolic intermediates of PYS to serine may mimic the cystathionine ß-synthase-catalyzed condensation of serine and homocysteine (in the pathway sly00260 sourced from KEGG database). This study ground breakingly proposed that serine may play an important role in plant metabolism of PYS and fluensulfone (whose molecular structure is similar to PYS). PYS and atrazine (whose toxicity profile is similar to PYS but not conjugate with serine) produced different regulatory outcomes for endogenous compounds in the pathway sly00260. Differential metabolites in tomato leaves exposed to PYS compared with the control, including amino acids, phosphates, and flavonoids, may play important roles in tomato response to PYS stress. This study provides inspiration for the biotransformation of sulfonyl-containing pesticides, antibiotics and other compounds in plants.
Assuntos
Plântula , Solanum lycopersicum , Plântula/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Isoxazóis/metabolismo , Serina/metabolismo , Compostos de Sulfidrila/metabolismoRESUMO
Cadmium (Cd) is highly toxic to both plants and humans.Light plays crucial roles in plant growth, development and stress responses, but how light functions in plant Cd response remain unclear.Here,we found that Cd treatment significantly induced the expression of PHYB but not PHYA and CRY1 in leaves and roots of cucumber. Correspondingly,compared with white light (W) during Cd stress,red light(R) increased Cd sensitivity,whereas blue light (B) enhanced Cd tolerance as evidenced by decreased Cd-induced chlorosis, growth inhibition, photosynthesis inhibition and chloroplast ultrastructure damage.Furthermore,B markedly increased the transcripts and activities of the antioxidant enzymes including ascorbate peroxidase (APX),catalase (CAT),superoxide dismutase (SOD) and glutathione reductase (GR),as well as glutathione (GSH) content and GSH1 expression, resulting in hydrogen peroxide (H2O2) and superoxide (O2.-) reduction,but R treatment showed the opposite trend. Moreover, R and B markedly up-regulated and down-regulated the expression levels of Cd uptake and transport genes including IRT1, NRAMP1 and HMA3, leading to more and less Cd accumulation than the W-treated plants in both shoots and roots, respectively under Cd stress. Collectively, our data clearly demonstrate that R and B function antagonistically to regulate Cd tolerance in cucumber via modulating the photosynthesis, antioxidant defense system and Cd uptake, providing a novel light quality control strategy to enhance crop Cd tolerance and food safety.
Assuntos
Antioxidantes , Cucumis sativus , Antioxidantes/metabolismo , Cádmio/metabolismo , Cádmio/toxicidade , Cucumis sativus/metabolismo , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Superóxido Dismutase/metabolismoRESUMO
Phenanthrene (PHE), a typical organic pollutant, has drawn attention in recent years due to its toxicity to plants and human health. Gamma-aminobutyric acid (GABA) induce plant tolerance to diverse stresses. However, the role and regulatory mechanisms of GABA in PHE stress responses in plants remains largely uncharacterized. Here, we showed that GABA content increased by 44.5%, 89.2%, 160% and 39.2% under 50, 100, 200 and 300 µM PHE treatment, respectively compared with mock. GABA treatment alleviated PHE-induced growth inhibition in a dose-dependent manner, with the most effective concentration of 50 mM GABA. Although exogenous GABA could not influence the accumulation of PHE in cucumber, it significantly mitigated photosynthetic inhibition and enhanced the transcripts and activities of the antioxidant enzymes such as ascorbate peroxidase (APX), catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD), resulting in less accumulation of hydrogen peroxide (H2O2) and superoxide (O2.-). Importantly, timecourse analyses of glutathione (GSH) homeostasis showed that GABA markedly increased GSH content and GR activity as well as the transcripts of GSH biosynthesis-related genes GSH1, GSH2 and GR during PHE stress. Conversely, pretreatment with GSH biosynthesis inhibitor buthionine sulfoximine (BSO) abolished the GABA-induced changes in PHE stress. Together, these results suggest that GABA enhances tolerance to PHE stress via a GSH-dependent system of antioxidant defense in cucumber.
Assuntos
Antioxidantes/metabolismo , Fenantrenos/toxicidade , Ácido gama-Aminobutírico/metabolismo , Ascorbato Peroxidases/metabolismo , Catalase/metabolismo , Cucumis sativus/metabolismo , Glutationa/metabolismo , Peróxido de Hidrogênio/farmacologia , Malondialdeído/farmacologia , Peroxidases/metabolismo , Fotossíntese/efeitos dos fármacos , Fenômenos Fisiológicos Vegetais , Superóxido Dismutase/metabolismo , SuperóxidosRESUMO
Iron deficiency severely affects crop yield and quality. Gamma-aminobutyric acid (GABA) plays a vital role in plant responses to multifarious stresses. However, the role of GABA in Fe deficiency responses and the potential mechanisms remain largely unknown in cucumber. Here, we found that Fe deficiency raised the GABA levels in leaves and roots of cucumber. To probe the role of GABA in Fe deficiency, the seedlings were subjected to five levels of GABA concentrations (0, 5, 10, 20 and 40 mmol L-1) for 7 days under Fe deficiency. The results demonstrated that 20 mM GABA in alleviating the Fe deficiency-induced stress was the most effective. GABA pretreatment reduced the Fe deficiency-induced chlorosis and inhibition of photosynthesis and growth, and significantly enhanced the contents of iron in shoots and roots. Exogenous GABA significantly decreased the pH of nutrient solution and increased ferric-chelate reductase (FCR) activity induced by Fe deficiency and the transcript levels of Fe uptake-related genes HA1, FRO2 and IRT1 in roots. GABA also increased the content of auxin (IAA) and expression of auxin biosynthesis (YUC4), response (IAA1), and transport (PIN1) genes under Fe deficiency. Furthermore, exogenous the auxin transport inhibitor 1-naphthylphthalamic acid (NPA) application abolished the GABA-induced changes in Fe deficiency. In summary, we found that GABA improves tolerance to iron deficiency via an auxin-dependent mechanism in cucumber.