Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8469, 2024 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605098

RESUMO

Obesity is associated with increased risk and worse prognosis of many tumours including those of the breast and of the esophagus. Adipokines released from the peritumoural adipose tissue promote the metastatic potential of cancer cells, suggesting the existence of a crosstalk between the adipose tissue and the surrounding tumour. Mitochondrial Ca2+ signaling contributes to the progression of carcinoma of different origins. However, whether adipocyte-derived factors modulate mitochondrial Ca2+ signaling in tumours is unknown. Here, we show that conditioned media derived from adipose tissue cultures (ADCM) enriched in precursor cells impinge on mitochondrial Ca2+ homeostasis of target cells. Moreover, in modulating mitochondrial Ca2+ responses, a univocal crosstalk exists between visceral adipose tissue-derived preadipocytes and esophageal cancer cells, and between subcutaneous adipose tissue-derived preadipocytes and triple-negative breast cancer cells. An unbiased metabolomic analysis of ADCM identified creatine and creatinine for their ability to modulate mitochondrial Ca2+ uptake, migration and proliferation of esophageal and breast tumour cells, respectively.


Assuntos
Tecido Adiposo , Neoplasias , Humanos , Tecido Adiposo/patologia , Adipócitos , Obesidade/complicações , Gordura Subcutânea/patologia , Neoplasias/patologia
2.
Cell Death Dis ; 15(1): 58, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233399

RESUMO

MitoKATP is a channel of the inner mitochondrial membrane that controls mitochondrial K+ influx according to ATP availability. Recently, the genes encoding the pore-forming (MITOK) and the regulatory ATP-sensitive (MITOSUR) subunits of mitoKATP were identified, allowing the genetic manipulation of the channel. Here, we analyzed the role of mitoKATP in determining skeletal muscle structure and activity. Mitok-/- muscles were characterized by mitochondrial cristae remodeling and defective oxidative metabolism, with consequent impairment of exercise performance and altered response to damaging muscle contractions. On the other hand, constitutive mitochondrial K+ influx by MITOK overexpression in the skeletal muscle triggered overt mitochondrial dysfunction and energy default, increased protein polyubiquitination, aberrant autophagy flux, and induction of a stress response program. MITOK overexpressing muscles were therefore severely atrophic. Thus, the proper modulation of mitoKATP activity is required for the maintenance of skeletal muscle homeostasis and function.


Assuntos
Trifosfato de Adenosina , Canais de Potássio , Trifosfato de Adenosina/metabolismo , Canais de Potássio/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Mitocôndrias Cardíacas/metabolismo
3.
Food Chem ; 439: 138124, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38064839

RESUMO

The evolving field of food technology is increasingly dedicated to developing functional foods. This study explored bioactive peptides from sunflower protein isolate (SPI), obtained from defatted flour, a by-product of the oil processing industry. SPI underwent simulated gastrointestinal digestion and the obtained peptide-enriched fraction (PEF) showed antioxidant properties in vivo, in zebrafish. Among the peptides present in PEF identified by mass spectrometry analysis, we selected those with antioxidant properties by in silico evaluation, considering their capability to interact with Keap1, key protein in the regulation of antioxidant response. The selected peptides were synthesized and evaluated in a cellular model. As a result, DVAMPVPK, VETGVIKPG, TTHTNPPPEAE, LTHPQHQQQGPSTG and PADVTPEEKPEV activated Keap1/Nrf2 pathway leading to Antioxidant Response Element-regulated enzymes upregulation. Since the crosstalk between Nrf2 and NF-κB is well known, the potential anti-inflammatory activity of the peptides was assessed and principally PADVTPEEKPEV showed good features both as antioxidant and anti-inflammatory molecule.


Assuntos
Antioxidantes , Helianthus , Animais , Antioxidantes/química , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Helianthus/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Peixe-Zebra/metabolismo , Peptídeos/farmacologia , Peptídeos/metabolismo , Anti-Inflamatórios/farmacologia , Modelos Animais , Simulação por Computador
4.
Nat Cell Biol ; 23(10): 1085-1094, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34616026

RESUMO

Cells respond to stress by blocking translation, rewiring metabolism and forming transient messenger ribonucleoprotein assemblies called stress granules (SGs). After stress release, re-establishing homeostasis and disassembling SGs requires ATP-consuming processes. However, the molecular mechanisms whereby cells restore ATP production and disassemble SGs after stress remain poorly understood. Here we show that upon stress, the ATP-producing enzyme Cdc19 forms inactive amyloids, and that their rapid re-solubilization is essential to restore ATP production and disassemble SGs in glucose-containing media. Cdc19 re-solubilization is initiated by the glycolytic metabolite fructose-1,6-bisphosphate, which directly binds Cdc19 amyloids, allowing Hsp104 and Ssa2 chaperone recruitment and aggregate re-solubilization. Fructose-1,6-bisphosphate then promotes Cdc19 tetramerization, which boosts its activity to further enhance ATP production and SG disassembly. Together, these results describe a molecular mechanism that is critical for stress recovery and directly couples cellular metabolism with SG dynamics via the regulation of reversible Cdc19 amyloids.


Assuntos
Amiloide/química , Proteínas de Ciclo Celular/química , Grânulos Citoplasmáticos/química , Piruvato Quinase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico , Trifosfato de Adenosina/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Frutosedifosfatos/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Piruvato Quinase/química , Piruvato Quinase/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
5.
Rheumatol Int ; 40(2): 263-272, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31435754

RESUMO

Few studies have compared the efficacy of switching from etanercept to adalimumab in the real-life setting in rheumatoid arthritis (RA) and psoriatic arthritis (PsA). This study evaluated the 2-year retention rate and 12-month efficacy of adalimumab in RA and PsA patients, previously treated with etanercept. RA and PsA patients from 11 Italian Rheumatology Units received adalimumab after first-line etanercept failure. Two-year adalimumab retention rate was calculated by the Kaplan-Meier method and Cox proportional hazard models were developed to examine predictors of drug persistence. Univariate and multivariate logistic regression analyses were developed to examine potential predictors of 12-month DAS-28 remission. The study population included 117 RA (disease duration of 10.1 ± 7.7 years and baseline DAS28-ESR of 4.97 ± 1.3) and 102 PsA (disease duration of 7.1 ± 5.1 years and baseline DAPSA of 24.6 ± 11.8). The 2-year retention rate was 48.2% in RA and 56.5% in PsA patients. Concomitant methotrexate treatment was not associated with increased drug survival in both groups. Similarly, cause of etanercept discontinuation or treatment duration was not associated with retention rate. 12-month remission and low disease activity were achieved, respectively, in 27.3% and 23.9% of RA patients and 27.4% and 23.5% PsA of patients. In multivariate models, etanercept discontinuation due to inefficacy (OR 0.27, 95% CI 1.03-0.73; p = 0.009) and baseline DAS-28 (OR 0.45, 95% CI 0.29-0.69; p < 0.001) remained significant negative predictors of remission in RA patients. No variable was associated with remission in PsA patients. Adalimumab after etanercept failure was highly effective and safe in both RA and PsA patients.


Assuntos
Adalimumab/uso terapêutico , Artrite Psoriásica/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Substituição de Medicamentos , Etanercepte/uso terapêutico , Adesão à Medicação , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Adulto , Idoso , Antirreumáticos/uso terapêutico , Artrite Psoriásica/fisiopatologia , Artrite Reumatoide/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Falha de Tratamento
6.
Genome Res ; 29(12): 1974-1984, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31740578

RESUMO

Cryptic transcription is widespread and generates a heterogeneous group of RNA molecules of unknown function. To improve our understanding of cryptic transcription, we investigated their transcription start site (TSS) usage, chromatin organization, and posttranscriptional consequences in Saccharomyces cerevisiae We show that TSSs of chromatin-sensitive internal cryptic transcripts retain comparable features of canonical TSSs in terms of DNA sequence, directionality, and chromatin accessibility. We define the 5' and 3' boundaries of cryptic transcripts and show that, contrary to RNA degradation-sensitive ones, they often overlap with the end of the gene, thereby using the canonical polyadenylation site, and associate to polyribosomes. We show that chromatin-sensitive cryptic transcripts can be recognized by ribosomes and may produce truncated polypeptides from downstream, in-frame start codons. Finally, we confirm the presence of the predicted polypeptides by reanalyzing N-terminal proteomic data sets. Our work suggests that a fraction of chromatin-sensitive internal cryptic promoters initiates the transcription of alternative truncated mRNA isoforms. The expression of these chromatin-sensitive isoforms is conserved from yeast to human, expanding the functional consequences of cryptic transcription and proteome complexity.


Assuntos
Cromatina , Regulação Fúngica da Expressão Gênica , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Sítio de Iniciação de Transcrição , Cromatina/genética , Cromatina/metabolismo , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidade de RNA , RNA Fúngico/biossíntese , RNA Fúngico/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Nat Struct Mol Biol ; 21(6): 560-8, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24837193

RESUMO

Condensin complexes have central roles in the three-dimensional organization of chromosomes during cell divisions, but how they interact with chromatin to promote chromosome segregation is largely unknown. Previous work has suggested that condensin, in addition to encircling chromatin fibers topologically within the ring-shaped structure formed by its SMC and kleisin subunits, contacts DNA directly. Here we describe the discovery of a binding domain for double-stranded DNA formed by the two HEAT-repeat subunits of the Saccharomyces cerevisiae condensin complex. From detailed mapping data of the interfaces between the HEAT-repeat and kleisin subunits, we generated condensin complexes that lack one of the HEAT-repeat subunits and consequently fail to associate with chromosomes in yeast and human cells. The finding that DNA binding by condensin's HEAT-repeat subunits stimulates the SMC ATPase activity suggests a multistep mechanism for the loading of condensin onto chromosomes.


Assuntos
Adenosina Trifosfatases/química , Cromossomos/metabolismo , Proteínas de Ligação a DNA/química , Complexos Multiproteicos/química , Saccharomyces cerevisiae/genética , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/fisiologia , Sítios de Ligação , Cromossomos/química , DNA/química , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/fisiologia , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Subunidades Proteicas/fisiologia , Alinhamento de Sequência , Análise de Sequência de Proteína
8.
Chromosoma ; 122(3): 175-90, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23546018

RESUMO

The successful transmission of complete genomes from mother to daughter cells during cell divisions requires the structural re-organization of chromosomes into individualized and compact structures that can be segregated by mitotic spindle microtubules. Multi-subunit protein complexes named condensins play a central part in this chromosome condensation process, but the mechanisms behind their actions are still poorly understood. An increasing body of evidence suggests that, in addition to their role in shaping mitotic chromosomes, condensin complexes have also important functions in directing the three-dimensional arrangement of chromatin fibers within the interphase nucleus. To fulfill their different functions in genome organization, the activity of condensin complexes and their localization on chromosomes need to be strictly controlled. In this review article, we outline the regulation of condensin function by phosphorylation and other posttranslational modifications at different stages of the cell cycle. We furthermore discuss how these regulatory mechanisms are used to control condensin binding to specific chromosome domains and present a comprehensive overview of condensin's interaction partners in these processes.


Assuntos
Adenosina Trifosfatases/metabolismo , Cromossomos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Adenosina Trifosfatases/genética , Animais , Divisão Celular , Cromossomos/genética , Proteínas de Ligação a DNA/genética , Humanos , Complexos Multiproteicos/genética , Fosforilação , Ligação Proteica
9.
Clin Cases Miner Bone Metab ; 9(1): 45-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22783336

RESUMO

OBJECTIVE: to assess the prevalence of the most relevant environmental and individual risk factors in subjects with a recent hip fracture was the aim of this observational study promoted by the Health Authorities of the Regione Veneto (Italy). METHODS: patients aged > 60 years of both genders with a recent hip fracture not associated with malignancies, were administered questionnaires on dietary habits, sun exposure, disability score. A complete family, pharmacological and pathology history was collected together with previous falls, details of the fracture index, anthropometric data. In a subgroup of patients blood was taken for the measurements of serum 25 hydroxy-vitamin D (25OHD). RESULTS: the study includes 704 patients (573 women and 131 men). Mean age was 81±8 years (range 60-102). Severe pre-fracture disability was a common feature (58%) associated with multiple co-morbidities (84%), more frequently cardiovascular and neurological diseases, and specific medications. In a large proportion (86%) of the patients environmental or individual risk factors for falling were found. Vitamin D insufficiency was quite common, particularly in the regional Health Districts were strategies for preventing vitamin D deficiency were not implemented. Only a small proportion (17%) of the study population had been evaluate and treated for osteoporosis. CONCLUSIONS: in senile patients with a recent hip fracture pre-existing disability, multiple co-morbidities, high risk of falling and inadequate intake of calcium and vitamin D was quite common. Community and case-finding interventions are highly warranted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA