Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Infect Genet Evol ; 121: 105598, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38653335

RESUMO

Klebsiella pneumoniae is an opportunistic pathogen that can colonize the gastrointestinal tract (GIT) of humans. The mechanisms underlying the successful translocation of this pathogen to cause extra-intestinal infections remain unknown, although virulence and antimicrobial resistance traits likely play significant roles in the establishment of infections. We investigated K. pneumoniae strains isolated from GIT colonization (strains Kp_FZcol-1, Kp_FZcol-2 and Kp_FZcro-1) and from a fatal bloodstream infection (strain Kp_HM-1) in a leukemia patient. All strains belonged to ST307, carried a transferable IncF plasmid containing the blaCTX-M-15 gene (pKPN3-307 TypeA-like plasmid) and showed a multidrug-resistance phenotype. Phylogenetic analysis demonstrated that Kp_HM-1 was more closely related to Kp_FZcro-1 than to the other colonizing strains. The Kp_FZcol-2 genome showed 81 % coverage with the Kp_HM-1 246,730 bp plasmid (pKp_HM-1), lacking most of its putative virulence genes. Searching public genomes with similar coverage, we observed the occurrence of this deletion in K. pneumoniae ST307 strains recovered from human colonization and infection in different countries. Our findings suggest that strains lacking the putative virulence genes found in the pKPN3-307 TypeA plasmid are still able to colonize and infect humans, highlighting the need to further investigate the role of these genes for the adaptation of K. pneumoniae ST307 in distinct human body sites.


Assuntos
Trato Gastrointestinal , Infecções por Klebsiella , Klebsiella pneumoniae , Leucemia , Filogenia , beta-Lactamases , Humanos , Masculino , Antibacterianos/farmacologia , Bacteriemia/microbiologia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Trato Gastrointestinal/microbiologia , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/patogenicidade , Klebsiella pneumoniae/efeitos dos fármacos , Leucemia/microbiologia , Leucemia/complicações , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Virulência/genética , Fatores de Virulência/genética , Pessoa de Meia-Idade
2.
Infect Genet Evol ; 96: 105122, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34662743

RESUMO

Surgical site infections in instrumented posterior lumbar interbody fusion surgery are normally due to gram-positive bacteria, but gram-negative bacteria can cause infections in cases involving lower lumbar interventions as its closer to the perianal area. Here we report an uncommon fatal wound infection caused by a multidrug-resistant Klebsiella pneumoniae after an elective spine surgery. In silico analysis revealed that LWI_ST16 belonged to ST16, an emergent international clone notable for its increased virulence potential. We also observed that this strain carried a conjugative IncF plasmid encoding resistance genes to beta-lactams (blaKPC-2 and blaOXA-1), tetracycline (tetA), aminoglycosides and fluoroquinolones (aac(6')-Ib-cr). The carbapenemase encoding gene blaKPC-2 was located on a Tn4401e transposon previously characterized to increase blaKPC expression. LWI_ST16 is a strong biofilm producer on polystyrene and capable of forming tower-like structures on a titanium device like the one inserted in the patient's spine. Our findings strengthen the valuable contribution of continuous surveillance of multidrug-resistant and high-risk K. pneumoniae clones to avoid unfavourable clinical outcomes.


Assuntos
Farmacorresistência Bacteriana Múltipla , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Coluna Vertebral/cirurgia , Infecção da Ferida Cirúrgica/microbiologia , Infecção dos Ferimentos/microbiologia , Idoso , Evolução Fatal , Feminino , Humanos , Infecções por Klebsiella/tratamento farmacológico , Infecção da Ferida Cirúrgica/tratamento farmacológico , Infecção dos Ferimentos/tratamento farmacológico
3.
Mem. Inst. Oswaldo Cruz ; 111(9): 551-558, Sept. 2016. tab, graf
Artigo em Inglês | LILACS | ID: lil-794722

RESUMO

Carbapenem-resistance mechanisms are a challenge in the treatment of Pseudomonas aeruginosa infections. We investigated changes in P. aeruginosa carbapenem-resistance determinants over a time period of eight years after the emergence of São Paulo metallo-β-lactamase in a university hospital in Rio de Janeiro, Brazil. Patients admitted to the intensive care unit (ICU) were screened for P. aeruginosa colonisation and followed for the occurrence of infections from April 2007 to April 2008. The ICU environment was also sampled. Isolates were typed using random amplified polymorphic DNA, pulsed-field gel electrophoresis and multilocus sequence typing. Antimicrobial susceptibility was determined by disk diffusion and E-test, production of carbapenemases by a modified-CarbaNP test and presence of carbapenemase-encoding genes by polymerase chain reaction. Non-carbapenemase resistance mechanisms studied included efflux and AmpC overexpression by PAβN and cloxacillin susceptibility enhancement, respectively, as well as oprD mutations. From 472 P. aeruginosa clinical isolates (93 patients) and 17 isolates from the ICU environment, high genotypic diversity and several international clones were observed; one environment isolate belonged to the blaSPM-1 P. aeruginosa epidemic genotype. Among isolates from infections, 10 (29%) were carbapenem resistant: none produced carbapenemases, three exhibited all non-carbapenemase mechanisms studied, six presented a combination of two mechanisms, and one exclusively displayed oprD mutations. Carbapenem-resistant P. aeruginosa displayed a polyclonal profile after the SPM-1 epidemic genotype declined. This phenomenon is connected with blaSPM-1 P. aeruginosa replaced by other carbapenem-resistant pathogens.


Assuntos
Humanos , Resistência beta-Lactâmica/genética , beta-Lactamases/biossíntese , Carbapenêmicos/farmacologia , Pseudomonas aeruginosa/enzimologia , Infecções por Pseudomonas/microbiologia , Antibacterianos/farmacologia , Resistência beta-Lactâmica/efeitos dos fármacos , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , DNA Bacteriano/genética , Eletroforese em Gel de Campo Pulsado , Genótipo , Hospitais Universitários , Unidades de Terapia Intensiva , Tipagem de Sequências Multilocus , Reação em Cadeia da Polimerase , Estudos Prospectivos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética
4.
Mem. Inst. Oswaldo Cruz ; 110(2): 249-254, 04/2015. tab, graf
Artigo em Inglês | LILACS | ID: lil-744470

RESUMO

The dissemination of plasmid-mediated antimicrobial resistance genes may pose a substantial public health risk. In the present work, the occurrences of blaCTX-M and plasmid-mediated ampC and qnr genes were investigated in Escherichia coli from 16 chicken carcasses produced by four commercial brands in Brazil. Of the brands tested, three were exporters, including one of organic chicken. Our study assessed 136 E. coli isolates that were grouped into 77 distinct biotypes defined by their origin, resistance profiling, the presence of β-lactamase and plasmid-mediated quinolone resistance genes and enterobacterial repetitive intergenic consensus-polimerase chain reaction typing. The blaCTX-M-15, blaCTX-M-2 and blaCTX-M-8 genes were detected in one, 17 and eight different biotypes, respectively (45 isolates). Twenty-one biotypes (46 isolates) harboured blaCMY-2. Additionally, blaCMY-2 was identified in isolates that also carried either blaCTX-M-2 or blaCTX-M-8. The qnrB and/or qnrS genes occurred in isolates carrying each of the four types of β-lactamase determinants detected and also in oxyimino-cephalosporin-susceptible strains. Plasmid-mediated extended-spectrum β-lactamase (ESBL) and AmpC determinants were identified in carcasses from the four brands tested. Notably, this is the first description of blaCTX-M-15 genes in meat or food-producing animals from South America. The blaCTX-M-8, blaCTX-M-15 and blaCMY-2 genes were transferable in conjugation experiments. The findings of the present study indicate that plasmid-mediated ESBL and AmpC-encoding genes are widely distributed in Brazilian chicken meat.


Assuntos
Humanos , Hospitalização , Cuidados de Enfermagem , Alta do Paciente , Readmissão do Paciente , Estudos Prospectivos , Qualidade de Vida
5.
Drug Resist Updat ; 17(1-2): 24-36, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24618111

RESUMO

South America exhibits some of the higher rates of antimicrobial resistance in Enterobactericeae worldwide. This continent includes 12 independent countries with huge socioeconomic differences, where the ample access to antimicrobials, including counterfeit ones, coexists with ineffective health systems and sanitation problems, favoring the emergence and dissemination of resistant strains. This work presents a literature review concerning the evolution and current status of antimicrobial resistance threats found among Enterobacteriaceae in South America. Resistance to ß-lactams, fluoroquinolones and aminoglycosides was emphasized along with description of key epidemiological studies that highlight the success of specific resistance determinants in different parts of the continent. In addition, a discussion regarding political and socioeconomic factors possibly related to the dissemination of antimicrobial resistant strains in clinical settings and at the community is presented. Finally, in order to assess the possible sources of resistant bacteria, we compile the current knowledge about the occurrence of antimicrobial resistance in isolates in South American' food, food-producing animals and off-hospitals environments. By addressing that intensive intercontinental commerce and tourism neutralizes the protective effect of geographic barriers, we provide arguments reinforcing that globally integrated efforts are needed to decelerate the emergence and dissemination of antimicrobial resistant strains.


Assuntos
Antibacterianos/farmacologia , Infecções por Enterobacteriaceae/tratamento farmacológico , Enterobacteriaceae/efeitos dos fármacos , beta-Lactamases/genética , Aminoglicosídeos/farmacologia , Animais , Farmacorresistência Bacteriana Múltipla/genética , Enterobacteriaceae/genética , Enterobacteriaceae/metabolismo , Infecções por Enterobacteriaceae/epidemiologia , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/transmissão , Fluoroquinolonas/farmacologia , Microbiologia de Alimentos , Expressão Gênica , Humanos , Sistemas Políticos , Fatores Socioeconômicos , América do Sul/epidemiologia , beta-Lactamases/metabolismo , beta-Lactamas/farmacologia
7.
Mem. Inst. Oswaldo Cruz ; 107(6): 747-751, set. 2012. ilus, tab
Artigo em Inglês | LILACS | ID: lil-649489

RESUMO

The aim of this study was to characterize two metallo-β-lactamases (MBLs)-producing Pseudomonas aeruginosa clinical isolates showing meropenem susceptibility. Antimicrobial susceptibility was assessed by automated testing and Clinical and Laboratory Standards Institute agar dilution method. MBL production was investigated by phenotypic tests. Molecular typing was determined by pulsed field gel electrophoresis (PFGE). MBL-encoding genes, as well as their genetic context, were identified by polymerase chain reaction (PCR) and sequencing. The location of blaIMP-16 was determined by plasmid electrophoresis, Southern blot and hybridization. Transcriptional levels of blaIMP-16, mexB, mexD, mexF, mexY, ampC and oprD were determined by semi-quantitative real time PCR. The P. aeruginosa isolates studied, Pa30 and Pa43, showed imipenem and meropenem susceptibility by automated testing. Agar dilution assays confirmed meropenem susceptibility whereas both isolates showed low level of imipenem resistance. Pa30 and Pa43 were phenotypically detected as MBL producers. PFGE revealed their clonal relatedness. blaIMP-16 was identified in both isolates, carried as a single cassette in a class 1 integron that was embedded in a plasmid of about 60-Kb. Pa30 and Pa43 overexpressed MexAB-OprM, MexCD-OprJ and MexXY-OprM efflux systems and showed basal transcriptional levels of ampC and oprD. MBL-producing P. aeruginosa that are not resistant to meropenem may represent a risk for therapeutic failure and act as silent reservoirs of MBL-encoding genes.


Assuntos
Humanos , Antibacterianos/farmacologia , Imipenem/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Tienamicinas/farmacologia , Resistência beta-Lactâmica/genética , beta-Lactamases/biossíntese , Proteínas da Membrana Bacteriana Externa/metabolismo , Eletroforese em Gel de Campo Pulsado , Testes de Sensibilidade Microbiana/métodos , Reação em Cadeia da Polimerase , Pseudomonas aeruginosa/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA