Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 107: 117756, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38759255

RESUMO

Herein, four silver(I) complexes bearing acetylated d-galactopyranoside-based N-heterocyclic carbene ligands were synthesized and fully characterized by elemental analysis, NMR, and X-ray photoelectron spectroscopy. All complexes were obtained with an anomeric ß-configuration and as monocarbene species. In this study, we investigated the biological effects of the silver(I) complexes 2a-d on the human rhabdomyosarcoma cell line, RD. Our results show concentration-dependent effects on cell density, growth inhibition, and activation of key signaling pathways such as Akt 1/2, ERK 1/2, and p38-MAPK, indicating their potential as anticancer agents. Notably, at 35.5 µM, the complexes induced mitochondrial network disruption, as observed with 2b and 2c, whereas with 2a, this disruption was accompanied by nuclear content release. These results provide insight into the utility of carbohydrate incorporated NHC complexes of silver(I) as new agents in cancer therapy.


Assuntos
Antineoplásicos , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Rabdomiossarcoma , Prata , Humanos , Acetilação , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Relação Dose-Resposta a Droga , Galactose/química , Galactose/farmacologia , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/síntese química , Metano/química , Metano/análogos & derivados , Metano/farmacologia , Metano/síntese química , Estrutura Molecular , Rabdomiossarcoma/tratamento farmacológico , Rabdomiossarcoma/patologia , Prata/química , Prata/farmacologia , Relação Estrutura-Atividade
2.
Biomacromolecules ; 25(5): 2823-2837, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38602228

RESUMO

Self-assembled nanostructures such as those formed by peptide amphiphiles (PAs) are of great interest in biological and pharmacological applications. Herein, a simple and widely applicable chemical modification, a urea motif, was included in the PA's molecular structure to stabilize the nanostructures by virtue of intermolecular hydrogen bonds. Since the amino acid residue nearest to the lipid tail is the most relevant for stability, we decided to include the urea modification at that position. We prepared four groups of molecules (13 PAs in all), with varying levels of intermolecular cohesion, using amino acids with distinct ß-sheet promoting potential and/or containing hydrophobic tails of distinct lengths. Each subset contained one urea-modified PA and nonmodified PAs, all with the same peptide sequence. The varied responses of these PAs to variations in pH, temperature, counterions, and biologically related proteins were examined using microscopic, X-ray, spectrometric techniques, and molecular simulations. We found that the urea group contributes to the stabilization of the morphology and internal arrangement of the assemblies against environmental stimuli for all peptide sequences. In addition, microbiological and biological studies were performed with the cationic PAs. These assays reveal that the addition of urea linkages affects the PA-cell membrane interaction, showing the potential to increase the selectivity toward bacteria. Our data indicate that the urea motif can be used to tune the stability of a wide range of PA nanostructures, allowing flexibility on the biomaterial's design and opening a myriad of options for clinical therapies.


Assuntos
Ligação de Hidrogênio , Ureia , Ureia/química , Interações Hidrofóbicas e Hidrofílicas , Peptídeos/química , Peptídeos/farmacologia , Nanoestruturas/química , Tensoativos/química
3.
ACS Appl Bio Mater ; 6(11): 4714-4727, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37863908

RESUMO

Designing effective drug nanocarriers that are easy to synthesize, robust, and nontoxic is a significant challenge in nanomedicine. Polyamine-multivalent molecule nanocomplexes are promising drug carriers due to their simple and all-aqueous manufacturing process. However, these systems can present issues of colloidal instability over time and cellular toxicity due to the cationic polymer. In this study, we finely modulate the formation parameters of poly(allylamine-tripolyphosphate) complexes to jointly optimize the robustness and safety. Polyallylamine was ionically assembled with tripolyphosphate anions to form liquid-like nanocomplexes with a size of around 200 nm and a zeta potential of -30 mV. We found that nanocomplexes exhibit tremendous long-term stability (9 months of storage) in colloidal dispersion and that they are suitable as protein-loading agents. Moreover, the formation of nanocomplexes induced by tripolyphosphate anions produces a switch-off in the toxicity of the system by altering the overall charge from positive to negative. In addition, we demonstrate that nanocomplexes can be internalized by bone-marrow-derived macrophage cells. Altogether, these nanocomplexes have attractive and promising properties as delivery nanoplatforms for potential therapies based on the immune system activation.


Assuntos
Alilamina , Polifosfatos , Portadores de Fármacos , Polímeros
4.
ACS Appl Bio Mater ; 5(10): 4599-4610, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-35653507

RESUMO

Hydrogen bonding plays a critical role in the self-assembly of peptide amphiphiles (PAs). Herein, we studied the effect of replacing the amide linkage between the peptide and lipid portions of the PA with a urea group, which possesses an additional hydrogen bond donor. We prepared three PAs with the peptide sequence Phe-Phe-Glu-Glu (FFEE): two are amide-linked with hydrophobic tails of different lengths and the other possesses an alkylated urea group. The differences in the self-assembled structures formed by these PAs were assessed using diverse microscopies, nuclear magnetic resonance (NMR), and dichroism techniques. We found that the urea group influences the morphology and internal arrangement of the assemblies. Molecular dynamics simulations suggest that there are about 50% more hydrogen bonds in nanostructures assembled from the urea-PA than those assembled from the other PAs. Furthermore, in silico studies suggest the presence of urea-π stacking interactions with the phenyl group of Phe, which results in distinct peptide conformations in comparison to the amide-linked PAs. We then studied the effect of the urea modification on the mechanical properties of PA hydrogels. We found that the hydrogel made of the urea-PA exhibits increased stability and self-healing ability. In addition, it allows cell adhesion, spreading, and growth as a matrix. This study reveals that the inclusion of urea bonds might be useful in controlling the morphology, mechanical, and biological properties of self-assembled nanostructures and hydrogels formed by the PAs.


Assuntos
Hidrogéis , Nanoestruturas , Hidrogéis/química , Lipídeos , Nanoestruturas/química , Peptídeos/química , Ureia
5.
Biomacromolecules ; 22(8): 3274-3283, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34291897

RESUMO

Supramolecular nanostructures with tunable properties can have applications in medicine, pharmacy, and biotechnology. In this work, we show that the self-assembly behavior of peptide amphiphiles (PAs) can be effectively tuned by replacing the carboxylic acids exposed to the aqueous media with isosteres, functionalities that share key physical or chemical properties with another chemical group. Transmission electron microscopy, atomic force microscopy, and small-angle X-ray scattering studies indicated that the nanostructure's morphologies are responsive to the ionization states of the side chains, which are related to their pKa values. Circular dichroism studies revealed the effect of the isosteres on the internal arrangement of the nanostructures. The interactions between diverse surfaces and the nanostructures and the effect of salt concentration and temperature were assessed to further understand the properties of these self-assembled systems. These results indicate that isosteric replacements allow the pH control of supramolecular morphology by manipulating the pKa of the charged groups located on the nanostructure's surface. Theoretical studies were performed to understand the morphological transitions that the nanostructures underwent in response to pH changes, suggesting that the transitions result from alterations in the Coulomb forces between PA molecules. This work provides a strategy for designing biomaterials that can maintain or change behaviors based on the pH differences found within cells and tissues.


Assuntos
Nanoestruturas , Dicroísmo Circular , Microscopia Eletrônica de Transmissão , Peptídeos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA