Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38539554

RESUMO

Based on the multifaceted molecular machinery that tightly controls iron cellular homeostasis, this review delves into its paradoxical, potentially dangerous role in biological systems, with a special focus on double-edged sword correlations with cancer. Indeed, though iron is a vital micronutrient and a required cofactor participating in several essential cell functions, its tendency to cause oxidative stress can be related both to cancer risk and to the activation of cancer cell death pathways. In this scenario, ferroptosis refers to an iron-dependent form of regulated cell death (RCD) powered by an overload of lethal peroxides sharing distinctive oxidized phospholipid profiles. As a unique cell death pathway, ferroptosis is both morphologically and mechanistically different from other types of programmed cell death involving executioner family proteins. The accumulation of cytotoxic lipid peroxides encompasses a cellular antagonism between ferroptosis execution and defense systems, with iron-dependent death occurring when ferroptosis-promoting activities significantly exceed the cellular antioxidant defenses. The most recent molecular breakthroughs in the execution of ferroptosis have aroused great consideration in tumor biology, as targeting ferroptosis can provide new tools for exploring therapeutic strategies for tumor suppression. Mutations and death/survival pathway alterations, as well as distinctive metabolic regulations of cancer cells, including the propensity to generate ROS, are seen as features that can render cancer cells unprotected to ferroptosis, thereby exposing vulnerabilities which deserve further attention to be regarded as targetable for cancers with limited therapeutic options.

2.
Bioorg Chem ; 139: 106677, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37352721

RESUMO

Here we report a detailed structure-activity relationship (SAR) study related to [1,2,4]triazolo[4,3-a]quinoxaline-based compounds targeting the reader module of bromodomain containing-protein 9 (BRD9). 3D structure-based pharmacophore models, previously introduced by us, were here employed to evaluate a second generation of compounds, exploring different substitution patterns on the heterocyclic core. Starting from the promising data obtained from our previously identified [1,2,4]triazolo[4,3-a]quinoxaline-based compounds 1-4, the combination of in silico studies, chemical synthesis, biophysical and in vitro assays led to the identification of a new set of derivatives, selected for thoroughly exploring the chemical space of the bromodomain binding site. In more details, the investigation of different linkers at C-4 position highlighted the amine spacer as mandatory for the binding with the protein counterpart and the crucial role of the alkyl substituents at C-1 for increasing the selectivity toward BRD9. Additionally, the importance of a hydrogen bond donor group, critical to anchor the ZA region and required for the interaction with Ile53 residue, was inferred from the analysis of our collected results. Herein we also propose an optimization and an update of our previously reported "pharm-druglike2" 3D structure-based pharmacophore model, introducing it as "pharm-druglike2.1". Compounds 24-26, 32, 34 and 36 were identified as new valuable BRD9 binders featuring IC50 values in the low micromolar range. Among them, 24 and 36 displayed an excellent selectivity towards BRD9 and a good antiproliferative effect on a panel of leukemia models, especially toward CCRF-CEM cell line, with no cytotoxicity on healthy cells. Notably, the interaction of 24 and 36 with the bromodomain and PHD finger-containing protein 1 (BRPF1) also emerged, disclosing them as new and unexplored dual inhibitors for these two proteins highly involved in leukemia. These findings highlight the potential for the identification of new attractive dual epidrugs as well as a promising starting point for the development of chemical degraders endowed with anticancer activities.


Assuntos
Leucemia , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Quinoxalinas/farmacologia , Quinoxalinas/química , Relação Estrutura-Atividade , Sítios de Ligação , Proteínas de Ligação a DNA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
3.
Molecules ; 28(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37241902

RESUMO

A new series of tetrasubstituted pyrrole derivatives (TSPs) was synthesized based on a previously developed hypothesis on their ability to mimic hydrophobic protein motifs. The resulting new TSPs were endowed with a significant toxicity against human epithelial melanoma A375 cells, showing IC50 values ranging from 10 to 27 µM, consistent with the IC50 value of the reference compound nutlin-3a (IC50 = 15 µM). In particular, compound 10a (IC50 = 10 µM) resulted as both the most soluble and active among the previous and present TSPs. The biological investigation evidenced that the anticancer activity is related to the activation of apoptotic cell-death pathways, supporting our rational design based on the ability of TSPs to interfere with PPI involved in the cell cycle regulation of cancer cells and, in particular, the p53 pathway. A reinvestigation of the TSP pharmacophore by using DFT calculations showed that the three aromatic substituents on the pyrrole core are able to mimic the hydrophobic side chains of the hot-spot residues of parallel and antiparallel coiled coil structures suggesting a possible molecular mechanism of action. A structure-activity relationship (SAR) analysis which includes solubility studies allows us to rationalize the role of the different substituents on the pyrrole core.


Assuntos
Antineoplásicos , Melanoma , Humanos , Pirróis/farmacologia , Pirróis/química , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/farmacologia , Antineoplásicos/química , Relação Estrutura-Atividade , Melanoma/tratamento farmacológico , Proliferação de Células , Estrutura Molecular , Apoptose , Linhagem Celular Tumoral
4.
Int J Mol Sci ; 24(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37047448

RESUMO

Based on compelling preclinical evidence concerning the progress of our novel ruthenium-based metallotherapeutics, we are focusing research efforts on challenging indications for the treatment of invasive neoplasms such as the triple-negative breast cancer (TNBC). This malignancy mainly afflicts younger women, who are black, or who have a BRCA1 mutation. Because of faster growing and spreading, TNBC differs from other invasive breast cancers having fewer treatment options and worse prognosis, where existing therapies are mostly ineffective, resulting in a large unmet biomedical need. In this context, we benefited from an experimental model of TNBC both in vitro and in vivo to explore the effects of a biocompatible cationic liposomal nanoformulation, named HoThyRu/DOTAP, able to effectively deliver the antiproliferative ruthenium(III) complex AziRu, thus resulting in a prospective candidate drug. As part of the multitargeting mechanisms featuring metal-based therapeutics other than platinum-containing agents, we herein validate the potential of HoThyRu/DOTAP liposomes to act as a multimodal anticancer agent through inhibition of TNBC cell growth and proliferation, as well as migration and invasion. The here-obtained preclinical findings suggest a potential targeting of the complex pathways network controlling invasive and migratory cancer phenotypes. Overall, in the field of alternative chemotherapy to platinum-based drugs, these outcomes suggest prospective brand-new settings for the nanostructured AziRu complex to get promising goals for the treatment of metastatic TNBC.


Assuntos
Antineoplásicos , Rutênio , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/patologia , Rutênio/farmacologia , Rutênio/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ácidos Graxos Monoinsaturados , Lipossomos/uso terapêutico , Linhagem Celular Tumoral
5.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37108457

RESUMO

Metal-based drugs have attracted growing interest in biomedicine [...].


Assuntos
Complexos de Coordenação , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Metais
6.
Chemosphere ; 313: 137569, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36535497

RESUMO

Endocrine disruptors are chemicals widely used worldwide by industries in a variety of applications. Routinely exposure to these chemicals, even if at low doses, can cause damage effects on human health. In the present study, we evaluated toxic effects of nine chemicals, among which phthalates, using various cell lines to inspect their capability to interfere with cell proliferation and viability. Alongside, we investigated their affinity for phospholipids to assess the possible passage through biomembranes. Experimentally determined logkwIAM.MG values ranged from 1.37 to 3.49 whilst calculated log kwIAM.DD2 spanned from 1.80 to 5.21, supporting the target contaminants to exhibit lipophilicity moderate or very high. The achieved results were related to pharmacokinetic and toxicological properties by ADMET predictor™ and EPI Suite™ software. Triclosan and 4-Nonylphenol were found to be the most toxic against all cell lines screened, showing an IC50 of 30 µM for triclosan on human keratinocytes and of 50 µM for 4-Nonylphenol on human colorectal adenocarcinoma cells. Overall, even if the phthalates showed higher IC50 values (ranging from 170 µM to 280 µM), we can assert that all contaminants herein tested were able to interfere with cell growth and viability.


Assuntos
Disruptores Endócrinos , Triclosan , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Disruptores Endócrinos/toxicidade , Triclosan/toxicidade , Sobrevivência Celular , Membranas Artificiais , Interações Hidrofóbicas e Hidrofílicas
7.
Eur J Med Chem ; 247: 115018, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36577218

RESUMO

Targeting bromodomain-containing protein 9 (BRD9) represents a promising strategy for the development of new agents endowed with anticancer properties. With this aim, a set of 2,4,5-trisubstituted-2,4-dihydro-3H-1,2,4-triazol-3-one-based compounds was investigated following a combined approach that relied on in silico studies, chemical synthesis, biophysical and biological evaluation of the most promising items. The protocol was initially based on molecular docking experiments, accounting a library of 1896 potentially synthesizable items tested in silico against the bromodomain of BRD9. A first set of 21 compounds (1-21) was selected and the binding on BDR9 was assessed through AlphaScreen assays. The obtained results disclosed compounds 17 and 20 able to bind BRD9 in the submicromolar range (IC50 = 0.35 ± 0.18 µM and IC50 = 0.14 ± 0.03 µM, respectively) showing a promising selectivity profile when tested against further nine bromodomains. Taking advantage of 3D structure-based pharmacophore models, additional 10 derivatives were selected in silico for the synthetic step and binding assessment, highlighting seven compounds (22, 23, 25, 26, 28, 29, 31) able to selectively bind BRD9 among different bromodomains. The ability of the identified BRD9 binders to cross artificial membranes in vitro was also assessed, revealing a very good passive permeability profile. Preliminary studies were carried out on a panel of healthy and cancer human cell lines to explore the biological behavior of the selected compounds, disclosing a moderate activity and significant selectivity profile towards leukaemia cells. These results highlighted the applicability of the reported multidisciplinary approach for accelerating the selection of promising items and for driving the chemical synthesis of novel selective BRD9 binders. Moreover, the low molecular weight of the reported 2,4,5-trisubstituted-2,4-dihydro-3H-1,2,4-triazol-3-one-based BRD9 binders suggests the possibility for further exploring the chemical space in order to obtain new analogues with improved potency.


Assuntos
Fatores de Transcrição , Humanos , Linhagem Celular , Simulação de Acoplamento Molecular , Domínios Proteicos , Fatores de Transcrição/metabolismo , Triazóis
8.
Biomater Adv ; 139: 213016, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35882162

RESUMO

Lipid-conjugated Ru(III) complexes - designed to obtain lipophilic analogues of the low molecular weight derivative AziRu, which is a NAMI-A-like anticancer agent - have been synthesized and fully characterized. A detailed biophysical investigation, including multiple, integrated techniques, allowed determining their molecular and self-assembling properties in aqueous solutions mimicking the extracellular environment, showing that our design produced a protective effect from hydrolysis of the Ru(III) complexes. In vitro biological experiments, carried out in comparison with AziRu, demonstrated that, among the novel lipophilic Ru(III) complexes synthesized, the compounds derivatized with palmitic and stearic acid, that we named PalmiPyRu and StePyRu respectively, showed attractive features and a promising antiproliferative activity, selective on specific breast cancer phenotypes. To get a deeper insight into their interactions with potential biomacromolecular targets, their ability to bind both bovine serum albumin (BSA), an abundant serum carrier protein, and some DNA model systems, including duplex and G-quadruplex structures, has been investigated by spectroscopic techniques. Inductively coupled plasma-mass spectrometry (ICP-MS) analysis of the ruthenium amount incorporated in human MCF-7 and MDA-MB-231 breast cancer cells, after incubation in parallel experiments with PalmiPyRu and AziRu, showed a markedly higher cell uptake of the lipophilic Ru(III) complex with respect to AziRu. These data confirmed that the proper lipidic tail decorating the metal complex not only favoured the formation of aggregates in the extracellular media but also improved their cell membrane penetration, thus leading to higher antiproliferative activity selective on breast cancer cells.


Assuntos
Antineoplásicos , Neoplasias da Mama , Complexos de Coordenação , Rutênio , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Complexos de Coordenação/farmacologia , Feminino , Humanos , Rutênio/farmacologia , Soroalbumina Bovina/química
9.
Pharmaceutics ; 14(5)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35631543

RESUMO

Countless expectations converge in the multidisciplinary endeavour for the search and development of effective and safe drugs in fighting cancer. Although they still embody a minority of the pharmacological agents currently in clinical use, metal-based complexes have great yet unexplored potential, which probably hides forthcoming anticancer drugs. Following the historical success of cisplatin and congeners, but also taking advantage of conventional chemotherapy limitations that emerged with applications in the clinic, the design and development of non-platinum metal-based chemotherapeutics, either as drugs or prodrugs, represents a rapidly evolving field wherein candidate compounds can be fine-tuned to access interactions with druggable biological targets. Moving in this direction, over the last few decades platinum family metals, e.g., ruthenium and palladium, have been largely proposed. Indeed, transition metals and molecular platforms where they originate are endowed with unique chemical and biological features based on, but not limited to, redox activity and coordination geometries, as well as ligand selection (including their inherent reactivity and bioactivity). Herein, current applications and progress in metal-based chemoth are reviewed. Converging on the recent literature, new attractive chemotherapeutics based on transition metals other than platinum-and their bioactivity and mechanisms of action-are examined and discussed. A special focus is committed to anticancer agents based on ruthenium, palladium, rhodium, and iridium, but also to gold derivatives, for which more experimental data are nowadays available. Next to platinum-based agents, ruthenium-based candidate drugs were the first to reach the stage of clinical evaluation in humans, opening new scenarios for the development of alternative chemotherapeutic options to treat cancer.

10.
Br J Pharmacol ; 179(9): 1857-1873, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33595097

RESUMO

BACKGROUND AND PURPOSE: Recent biochemical and pharmacological studies have reported that in several tissues and cell types, microsomal PGE2 synthase (mPGES) and PPAR-γ expression are modulated by a variety of inflammatory factors and stimuli. Considering that very little is known about the biological effects promoted by IL-17 in the context of mPGES-1/PPAR-γ modulation, we sought to investigate the contribution of this unique cytokine on this integrated pathway during the onset of inflammation. EXPERIMENTAL APPROACH: We evaluated effects of PF 9184 (mPGES-1 inhibitor) and troglitazone (PPAR-γ agonist) in vitro, using the mouse macrophage cell line J774A.1. In vivo, the dorsal air pouch model in CD1 mice was used, and inflammatory infiltrates were analysed by flow cytometry. Locally produced cyto-chemokines and PGs were assessed using elisa assays. Western blots were also employed to determine the activity of various enzymes involved in downstream signalling pathways. KEY RESULTS: PF 9184 and troglitazone, in a time- and dose-dependent manner, modulated leukocyte infiltration, myeloperoxidase activity, and the expression of COX-2/mPGES-1, NF-кB/IкB-α, and mPTGDS-1/PPAR-γ, induced by IL-17. Moreover, both PF 9184 and troglitazone modulated PG (PGE2 , PGD2 , and PGJ2 ) production, the expression of different pro-inflammatory cyto-chemokines, and the recruitment of inflammatory monocytes, in response to IL-17. CONCLUSIONS AND IMPLICATIONS: Our data suggest that IL-17 may constitute a specific modulator of inflammatory monocytes during later phases of the inflammatory response. The results of this study show, for the first time, that the IL-17/mPGES-1/PPAR-γ pathway could represent a potential therapeutic target for inflammatory-based and immune-mediated diseases. LINKED ARTICLES: This article is part of a themed issue on Inflammation, Repair and Ageing. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.9/issuetoc.


Assuntos
Interleucina-17 , PPAR gama , Animais , Inflamação/metabolismo , Macrófagos , Camundongos , Monócitos/metabolismo , PPAR gama/metabolismo , Prostaglandina-E Sintases/metabolismo
11.
Bioorg Chem ; 118: 105480, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34823196

RESUMO

A well-structured in silico workflow is here reported for disclosing structure-based pharmacophore models against bromodomain-containing protein 9 (BRD9), accelerating virtual screening campaigns and facilitating the identification of novel binders. Specifically, starting from 23 known ligands co-crystallized with BRD9, three-dimensional pharmacophore models, namely placed in a reference protein structure, were developed. Specifically, we here introduce a fragment-related pharmacophore model, useful for the identification of new promising small chemical probes targeting the protein region responsible of the acetyllysine recognition, and two further pharmacophore models useful for the selection of compounds featuring drug-like properties. A pharmacophore-driven virtual screening campaign was then performed to facilitate the selection of new selective BRD9 ligands, starting from a large library of commercially available molecules. The identification of a promising BRD9 binder (7) prompted us to re-iterate this computational workflow on a second focused in-house built library of synthesizable compounds and, eventually, three further novel BRD9 binders were disclosed (8-10). Moreover, all these compounds were tested among a panel comprising other nine bromodomains, showing a high selectivity for BRD9. Preclinical bioscreens for potential anticancer activity highlighted compound 7 as that showing the most promising biological effects, proving the reliability of this in silico pipeline and confirming the applicability of the here introduced structure-based three-dimensional (3D) pharmacophore models as straightforward tools for the selection of new BRD9 ligands.


Assuntos
Descoberta de Drogas , Quinoxalinas/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Quinoxalinas/síntese química , Quinoxalinas/química , Relação Estrutura-Atividade , Fatores de Transcrição/metabolismo
12.
Cancers (Basel) ; 13(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34680314

RESUMO

Selectivity and efficacy towards target cancer cells, as well as biocompatibility, are current challenges of advanced chemotherapy powering the discovery of unconventional metal-based drugs and the search for novel therapeutic approaches. Among second-generation metal-based chemotherapeutics, ruthenium complexes have demonstrated promising anticancer activity coupled to minimal toxicity profiles and peculiar biochemical features. In this context, our research group has recently focused on a bioactive Ru(III) complex-named AziRu-incorporated into a suite of ad hoc designed nucleolipid nanosystems to ensure its chemical stability and delivery. Indeed, we proved that the structure and properties of decorated nucleolipids can have a major impact on the anticancer activity of the ruthenium core. Moving in this direction, here we describe a preclinical study performed by a mouse xenograft model of human breast cancer to establish safety and efficacy in vivo of a cationic Ru(III)-based nucleolipid formulation, named HoThyRu/DOTAP, endowed with superior antiproliferative activity. The results show a remarkable reduction in tumour with no evidence of animal suffering. Blood diagnostics, as well as biochemical analysis in both acute and chronic treated animal groups, demonstrate a good tolerability profile at the therapeutic regimen, with 100% of mice survival and no indication of toxicity. In addition, ruthenium plasma concentration analysis and tissue bioaccumulation were determined via appropriate sampling and ICP-MS analysis. Overall, this study supports both the efficacy of our Ru-containing nanosystem versus a human breast cancer model and its safety in vivo through well-tolerated animal biological responses, envisaging a possible forthcoming use in clinical trials.

13.
Res Vet Sci ; 137: 1-8, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33906007

RESUMO

Bovine herpesvirus 1 (BoHV-1) requires an iron-replete cell host to replicate efficiently. BoHV-1 infection provokes an increase in ferritin levels and a decrease of transferrin receptor 1 (TfR-1) expression, ultimately lowering iron pool extent. Thus, cells try to limit iron availability for virus spread. It has been demonstrated that MG-132, a proteasome inhibitor, reduces BoHV-1 release. Since ferritin, the major iron storage protein in mammalian cells, undergoes proteasome-mediated degradation, herein, the influence of MG-132 on iron metabolism during BoHV-1 infection was examined. Following infection in bovine cells (MDBK), MG-132 reduced cell death and viral yield. Western blot analysis showed a significant ferritin accumulation, likely due to the inhibition of its proteasome-mediated degradation pathway. In addition, the concomitant down-regulation of TfR-1 expression, observed during infection, was counteracted by proteasome inhibitor. This trend may be explained by enhanced acidic vesicular organelles, detected by acridine orange staining, determining a reduction of intracellular pH, that promotes new synthesis of TfR-1 degraded in a recycling pathway. In addition, MG-132 influences cellular iron distribution during BoHV-1 infection, as revealed by Perls' Prussian blue staining. However, cellular iron content, evaluated by Atomic Absorption Spectrophotometry, resulted essentially unaltered. These findings reveal that MG-132 may contribute to limit cellular iron availability for virus replication thereby enhancing cell survival.


Assuntos
Herpesvirus Bovino 1/efeitos dos fármacos , Herpesvirus Bovino 1/patogenicidade , Homeostase/efeitos dos fármacos , Leupeptinas/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Bovinos , Linhagem Celular , Virulência
14.
Eur J Pharm Sci ; 162: 105825, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33813038

RESUMO

A new isoform of human manganese superoxide dismutase (SOD) has been recently isolated and obtained in a synthetic recombinant form and termed rMnSOD. As compared to other SODs, this isoform exhibits a dramatically improved cellular uptake and an intense antioxidant and antitumoral activity. Unfortunately, its use is severely hampered as this active pharmaceutical ingredient (API) in solution suffers from remarkable instability, which realizes as an interplay of unfolding and aggregation phenomena. This leads the API to be ineffective after three weeks only when stored at 4°C. A formulation strategy was undertaken to mitigate this instability. This was based on the incorporation of the API in hyaluronic acid and its layer-by-layer deposition over a chitosan-n-acetyl cysteine- monolayer nanoemulsion (NE) and its subsequent coverage with a further external interface of a chitosan-n-acetyl cysteine. The obtained constructs were tested over a selected panel of healthy and cancerous cell lines. The undertaken formulation strategy enhanced the API's effect in vitro already at time zero, maintaining the efficacy of this anticancer agent until up to 30 weeks when stored at 4°C.


Assuntos
Neoplasias , Superóxido Dismutase , Antioxidantes , Humanos , Polímeros , Isoformas de Proteínas
15.
Vet Microbiol ; 247: 108762, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32768214

RESUMO

Bovine herpesvirus 1 (BoHV-1) is an important cattle pathogen, that may cause rhinotracheitis, abortions and shipping fever. Virus establishes latency in sensory neurons, but periodically could reactivate. Recent studies identified mouse neuroblastoma (Neuro-2A) cells as a novel cell culture model to study factors that regulate BoHV-1 productive infection in neuronal cells. Herein, following BoHV-1 infection in Neuro-2A, a reduced cell viability occurred. Membrane damage and death morphological alterations, features of apoptosis and necrosis, were distinguished in infected cells. In addition, biochemical signs of apoptosis (caspase 3 activation and PARP cleavage) were observed. These results were accompanied by incomplete autophagy due to enhanced amounts of autophagic markers (LC3-II, ATG5 and Beclin 1), in the presence of increased levels of p62. Interestingly, protein expression of viral infected cell protein 0 (bICP0) was detected in Neuro-2A cells, although BoHV-1 inefficiently replicates in these cells, because just low levels of viral yield were found. Taken together, our results suggest that BoHV-1 may exert its potential neurotoxicity through a combined mechanism of necrosis and apoptosis. Moreover, incomplete autophagy occurred during BoHV-1 replication in Neuro-2A cells, which were favourable for viral persistence.


Assuntos
Sobrevivência Celular , Herpesvirus Bovino 1/patogenicidade , Interações entre Hospedeiro e Microrganismos , Neurônios/virologia , Animais , Apoptose , Autofagia , Bovinos , Linhagem Celular Tumoral , Membrana Celular/patologia , Camundongos , Necrose , Neuroblastoma/virologia , Neurônios/fisiologia , Latência Viral
16.
Cells ; 9(6)2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32517101

RESUMO

In this review we have showcased the preclinical development of original amphiphilic nanomaterials designed for ruthenium-based anticancer treatments, to be placed within the current metallodrugs approach leading over the past decade to advanced multitarget agents endowed with limited toxicity and resistance. This strategy could allow for new options for breast cancer (BC) interventions, including the triple-negative subtype (TNBC) with poor therapeutic alternatives. BC is currently the second most widespread cancer and the primary cause of cancer death in women. Hence, the availability of novel chemotherapeutic weapons is a basic requirement to fight BC subtypes. Anticancer drugs based on ruthenium are among the most explored and advanced next-generation metallotherapeutics, with NAMI-A and KP1019 as two iconic ruthenium complexes having undergone clinical trials. In addition, many nanomaterial Ru complexes have been recently conceived and developed into anticancer drugs demonstrating attractive properties. In this field, we focused on the evaluation of a Ru(III) complex-named AziRu-incorporated into a suite of both zwitterionic and cationic nucleolipid nanosystems, which proved to be very effective for the in vivo targeting of breast cancer cells (BBC). Mechanisms of action have been widely explored in the context of preclinical evaluations in vitro, highlighting a multitarget action on cell death pathways which are typically deregulated in neoplasms onset and progression. Moreover, being AziRu inspired by the well-known NAMI-A complex, information on non-nanostructured Ru-based anticancer agents have been included in a precise manner.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Complexos de Coordenação/uso terapêutico , Lipídeos/química , Nanopartículas/química , Rutênio/uso terapêutico , Animais , Feminino , Humanos
17.
J Med Chem ; 63(5): 2035-2050, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-31241946

RESUMO

In the search for new drug-like selective G-quadruplex binders, a bioinspired design focused on the use of nucleobases as synthons in a multicomponent reaction was herein proved to be viable and successful. Hence, a new class of multifunctionalized imidazo[2,1-i]purine derivatives, easily synthesized with a convergent approach, allowed for the identification of the first dual BCL2/c-MYC gene promoter G-quadruplex ligand. Biophysical studies involving circular dichroism melting experiments, microscale thermophoresis measurements, NMR titrations, and computational docking calculations, as well as biological investigations including cytotoxicity and apoptotic assays, and quantitative polymerase chain reaction and Western blot analyses, were performed to assess the potency and to characterize the binding mode of the newly identified lead compound. The absence of toxicity toward normal cells, together with the small molecular weight (≅500 Da), the water solubility, the ease of functionalization, and the selectivity profile, are promising and desirable features to develop G-quadruplex binders as safe and effective anticancer agents.


Assuntos
Antineoplásicos/metabolismo , Produtos Biológicos/química , Proteínas de Ligação a DNA/metabolismo , Desenho de Fármacos , Quadruplex G , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fatores de Transcrição/metabolismo , Antineoplásicos/química , Produtos Biológicos/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Células HCT116 , Humanos , Imidazóis/química , Imidazóis/metabolismo , Células Jurkat , Células MCF-7 , Simulação de Acoplamento Molecular/métodos , Ligação Proteica/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Purinas/química , Purinas/metabolismo , Fatores de Transcrição/antagonistas & inibidores
18.
Nutrients ; 11(12)2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31847069

RESUMO

Hair disorders may considerably impact the social and psychological well-being of an individual. Recent advances in the understanding the biology of hair have encouraged the research and development of novel and safer natural hair growth agents. In this context, we have previously demonstrated-at both preclinical and clinical level-that an Annurca apple-based dietary supplement (AMS), acting as a nutraceutical, is endowed with an intense hair-inductive activity (trichogenicity), at once increasing hair tropism and keratin content. Herein, in the framework of preclinical investigations, new experiments in primary human models of follicular keratinocytes and dermal papilla cells have been performed to give an insight around AMS biological effects on specific hair keratins expression. As well as confirming the biocompatibility and the antioxidant proprieties of our nutraceutical formulation, we have proven an engagement of trichokeratins production underlying its biological effects on human follicular cells. Annurca apples are particularly rich in oligomeric procyanidins, natural polyphenols belonging to the broader class of bioflavonoids believed to exert many beneficial health effects. To our knowledge, none of the current available remedies for hair loss has hitherto shown to stimulate the production of hair keratins so clearly.


Assuntos
Folículo Piloso , Queratinas Específicas do Cabelo , Malus , Extratos Vegetais/farmacologia , Antioxidantes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Suplementos Nutricionais , Flavonoides , Folículo Piloso/citologia , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/metabolismo , Humanos , Queratinas Específicas do Cabelo/análise , Queratinas Específicas do Cabelo/metabolismo , Modelos Biológicos
19.
Sci Rep ; 9(1): 7006, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31065032

RESUMO

According to WHO, breast cancer incidence is increasing so that the search for novel chemotherapeutic options is nowadays an essential requirement to fight neoplasm subtypes. By exploring new effective metal-based chemotherapeutic strategies, many ruthenium complexes have been recently proposed as antitumour drugs, showing ability to impact on diverse cellular targets. In the framework of different molecular pathways leading to cell death in human models of breast cancer, here we demonstrate autophagy involvement behind the antiproliferative action of a ruthenium(III)-complex incorporated into a cationic nanosystem (HoThyRu/DOTAP), proved to be hitherto one of the most effective within the suite of nucleolipidic formulations we have developed for the in vivo transport of anticancer ruthenium(III)-based drugs. Indeed, evidences are implicating autophagy in both cancer development and therapy, and anticancer interventions endowed with the ability to trigger this biological response are currently considered attractive oncotherapeutic approaches. Moreover, crosstalk between apoptosis and autophagy, regulated by finely tuned metallo-chemotherapeutics, may provide novel opportunities for future improvement of cancer treatment. Following this line, our in vitro and in vivo preclinical investigations suggest that an original strategy based on suitable formulations of ruthenium(III)-complexes, inducing sustained cell death, could open new opportunities for breast cancer treatment, including the highly aggressive triple-negative subtype.


Assuntos
Antineoplásicos/administração & dosagem , Proteínas Relacionadas à Autofagia/metabolismo , Neoplasias da Mama/metabolismo , Complexos de Coordenação/administração & dosagem , Ácidos Graxos Monoinsaturados/química , Compostos de Amônio Quaternário/química , Rutênio/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Autofagia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Camundongos , Estrutura Molecular , Nanopartículas , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Int J Biol Macromol ; 118(Pt B): 1384-1399, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30170359

RESUMO

AS1411 is a nucleolin-binding aptamer which attracted great interest as active targeting ligand for the selective delivery of therapeutic agents to tumour cells. In this work we selected three AS1411 derivatives 5'-conjugated with lipophilic tails and studied their properties in view of their application in liposomial formulations and/or lipid coated-nanoparticles for targeted therapies. The conformational behaviour of these AS1411 analogs has been investigated in comparison with the unmodified aptamer by CD, UV, PAGE, SEC-HPLC, DLS and thioflavin T (ThT) fluorescence assays to get insight in their secondary structure and aggregation properties. This study has been performed in pseudo-physiological buffers mimicking the extra- and intracellular environments, and at different concentrations in the µM range, paying special attention to the effects of the lipophilic tail on the overall aptamer conformation. The 5'-lipidated AS1411 derivatives proved to fold into stable, parallel unimolecular G-quadruplex structures, forming large aggregates, mainly micelles, at conc. >10 µM. Preliminary bioscreenings on selected cancer cells showed that these derivatives are less cytotoxic than AS1411, but maintain a similar biological behaviour. This study demonstrated that lipophilic tails dramatically favour the formation of AS1411 aggregates, however not impairing the formation and thermal stability of its peculiar G4 motifs.


Assuntos
Aptâmeros de Nucleotídeos/química , Lipídeos/química , Oligodesoxirribonucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/farmacologia , Sequência de Bases , Proliferação de Células/efeitos dos fármacos , Células HCT116 , Humanos , Ligantes , Células MCF-7 , Conformação Molecular , Oligodesoxirribonucleotídeos/genética , Oligodesoxirribonucleotídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA