Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Sci Rep ; 14(1): 11909, 2024 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789721

RESUMO

T cells recirculate through tissues and lymphatic organs to scan for their cognate antigen. Radiation therapy provides site-specific cytotoxicity to kill cancer cells but also has the potential to eliminate the tumor-specific T cells in field. To dynamically study the effect of radiation on CD8 T cell recirculation, we used the Kaede mouse model to photoconvert tumor-infiltrating cells and monitor their movement out of the field of radiation. We demonstrate that radiation results in loss of CD8 T cell recirculation from the tumor to the lymph node and to distant sites. Using scRNASeq, we see decreased proliferating CD8 T cells in the tumor following radiation therapy resulting in a proportional enrichment in exhausted phenotypes. By contrast, 5 days following radiation increased recirculation of T cells from the tumor to the tumor draining lymph node corresponds with increased immunosurveillance of the treated tumor. These data demonstrate that tumor radiation therapy transiently impairs systemic T cell recirculation from the treatment site to the draining lymph node and distant untreated tumors. This may inform timing therapies to improve systemic T cell-mediated tumor immunity.


Assuntos
Linfócitos T CD8-Positivos , Animais , Camundongos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfonodos/efeitos da radiação , Linfonodos/patologia , Linfonodos/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Neoplasias/radioterapia , Neoplasias/imunologia , Neoplasias/patologia , Rastreamento de Células/métodos , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Fluorescência
2.
Nature ; 630(8015): 181-188, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38778098

RESUMO

Digital pathology poses unique computational challenges, as a standard gigapixel slide may comprise tens of thousands of image tiles1-3. Prior models have often resorted to subsampling a small portion of tiles for each slide, thus missing the important slide-level context4. Here we present Prov-GigaPath, a whole-slide pathology foundation model pretrained on 1.3 billion 256 × 256 pathology image tiles in 171,189 whole slides from Providence, a large US health network comprising 28 cancer centres. The slides originated from more than 30,000 patients covering 31 major tissue types. To pretrain Prov-GigaPath, we propose GigaPath, a novel vision transformer architecture for pretraining gigapixel pathology slides. To scale GigaPath for slide-level learning with tens of thousands of image tiles, GigaPath adapts the newly developed LongNet5 method to digital pathology. To evaluate Prov-GigaPath, we construct a digital pathology benchmark comprising 9 cancer subtyping tasks and 17 pathomics tasks, using both Providence and TCGA data6. With large-scale pretraining and ultra-large-context modelling, Prov-GigaPath attains state-of-the-art performance on 25 out of 26 tasks, with significant improvement over the second-best method on 18 tasks. We further demonstrate the potential of Prov-GigaPath on vision-language pretraining for pathology7,8 by incorporating the pathology reports. In sum, Prov-GigaPath is an open-weight foundation model that achieves state-of-the-art performance on various digital pathology tasks, demonstrating the importance of real-world data and whole-slide modelling.


Assuntos
Conjuntos de Dados como Assunto , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , Patologia Clínica , Humanos , Benchmarking , Processamento de Imagem Assistida por Computador/métodos , Neoplasias/classificação , Neoplasias/diagnóstico , Neoplasias/patologia , Patologia Clínica/métodos , Masculino , Feminino
3.
Breast Cancer Res Treat ; 205(3): 451-464, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38523186

RESUMO

PURPOSE: The progression of ductal carcinoma in situ (DCIS) to invasive breast carcinoma (IBC) in humans is highly variable. To better understand the relationship between them, we performed a multi-omic characterization of co-occurring DCIS and IBC lesions in a cohort of individuals. METHODS: Formalin-fixed paraffin-embedded tissue samples from 50 patients with co-occurring DCIS and IBC lesions were subjected to DNA-seq and whole transcriptome RNA-seq. Paired DCIS and IBC multi-omics profiles were then interrogated for DNA mutations, gene expression profiles and pathway analysis. RESULTS: Most small variants and copy number variations were shared between co-occurring DCIS and IBC lesions, with IBC exhibiting on average a higher degree of additional mutations. However, 36% of co-occurring lesions shared no common mutations and 49% shared no common copy number variations. The most frequent genomic variants in both DCIS and IBC were PIK3CA, TP53, KMT2C, MAP3K1, GATA3 and SF3B1, with KMT2C being more frequent in DCIS and TP53 and MAP3K1 more frequent in IBC, though the numbers are too small for definitive conclusions. The most frequent copy number variations were seen in MCL1, CKSB1 and ERBB2. ERBB2 changes were not seen in IBC unless present in the corresponding DCIS. Transcriptional profiles were highly distinct between DCIS and IBC, with DCIS exhibiting upregulation of immune-related signatures, while IBC showed significant overexpression in genes and pathways associated with cell division and proliferation. Interestingly, DCIS and IBC exhibited significant differential expression of different components of extracellular matrix (ECM) formation and regulation, with DCIS showing overexpression of ECM-membrane interaction components while IBC showed upregulation of genes associated with fibronectin and invadopodia. CONCLUSION: While most co-occurring DCIS and IBC were mutationally similar and suggestive of a common clonal progenitor, transcriptionally the lesions are highly distinct, with IBC expressing key pathways that facilitate invasion and proliferation. These results are suggestive of additional levels of regulation, epigenetic or other, that facilitate the acquisition of invasive properties during tumor evolution.


Assuntos
Neoplasias da Mama , Carcinoma Intraductal não Infiltrante , Variações do Número de Cópias de DNA , Mutação , Humanos , Feminino , Carcinoma Intraductal não Infiltrante/genética , Carcinoma Intraductal não Infiltrante/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Perfilação da Expressão Gênica/métodos , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/patologia , Carcinoma Ductal de Mama/metabolismo , Biomarcadores Tumorais/genética , Pessoa de Meia-Idade , Invasividade Neoplásica , Regulação Neoplásica da Expressão Gênica , Transcriptoma , Idoso , Adulto , Genômica/métodos , Multiômica
4.
Cancer Immunol Res ; 12(3): 322-333, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38147316

RESUMO

Preclinical murine data indicate that fragment crystallizable (Fc)-dependent depletion of intratumoral regulatory T cells (Treg) is a major mechanism of action of anti-CTLA-4. However, the two main antibodies administered to patients (ipilimumab and tremelimumab) do not recapitulate these effects. Here, we investigate the underlying mechanisms responsible for the limited Treg depletion observed with these therapies. Using an immunocompetent murine model humanized for CTLA-4 and Fcγ receptors (FcγR), we show that ipilimumab and tremelimumab exhibit limited Treg depletion in tumors. Immune profiling of the tumor microenvironment (TME) in both humanized mice and humans revealed high expression of the inhibitory Fc receptor, FcγRIIB, which limits antibody-dependent cellular cytotoxicity/phagocytosis. Blocking FcγRIIB in humanized mice rescued the Treg-depleting capacity and antitumor activity of ipilimumab. Furthermore, Fc engineering of antibodies targeting Treg-associated targets (CTLA-4 or CCR8) to minimize FcγRIIB binding significantly enhanced Treg depletion, resulting in increased antitumor activity across various tumor models. Our results define the inhibitory FcγRIIB as an immune checkpoint limiting antibody-mediated Treg depletion in the TME, and demonstrate Fc engineering as an effective strategy to overcome this limitation and improve the efficacy of Treg-targeting antibodies.


Assuntos
Neoplasias , Linfócitos T Reguladores , Humanos , Animais , Camundongos , Ipilimumab/farmacologia , Ipilimumab/uso terapêutico , Antígeno CTLA-4 , Microambiente Tumoral , Neoplasias/tratamento farmacológico
5.
BMC Gastroenterol ; 23(1): 258, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507685

RESUMO

BACKGROUND: Crohn's diseases and ulcerative colitis, both of which are chronic immune-mediated disorders of the gastrointestinal tract are major contributors to the overarching Inflammatory bowel diseases. It has become increasingly evident that the pathological processes of IBDs results from interactions between genetic and environmental factors, which can skew immune responses against normal intestinal flora. METHODS: The aim of this study is to assess and analyze the taxa diversity and relative abundances in CD and UC in the Saudi population. We utilized a sequencing strategy that targets all variable regions in the 16 S rRNA gene using the Swift Amplicon 16 S rRNA Panel on Illumina NovaSeq 6000. RESULTS: The composition of stool 16 S rRNA was analyzed from 219 patients with inflammatory bowel disease and from 124 healthy controls. We quantified the abundance of microbial communities to examine any significant differences between subpopulations of samples. At the genus level, two genera in particular, Veillonella and Lachnoclostridium showed significant association with CD versus controls. There were significant differences between subjects with CD versus UC, with the top differential genera spanning Akkermansia, Harryflintia, Maegamonas and Phascolarctobacterium. Furthermore, statistically significant taxa diversity in microbiome composition was observed within the UC and CD groups. CONCLUSIONS: In conclusion we have shown that there are significant differences in gut microbiota between UC, CD and controls in a Saudi Arabian inflammatory bowel disease cohort. This reinforces the need for further studies in large populations that are ethnically and geographically diverse. In addition, our results show the potential to develop classifiers that may have add additional richness of context to clinical diagnosis of UC and CD with larger inflammatory bowel disease cohorts.


Assuntos
Colite Ulcerativa , Doença de Crohn , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Humanos , Microbioma Gastrointestinal/genética , Arábia Saudita , Doenças Inflamatórias Intestinais/microbiologia , Colite Ulcerativa/microbiologia , Doença de Crohn/microbiologia
6.
Patterns (N Y) ; 4(4): 100726, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37123439

RESUMO

Most detailed patient information in real-world data (RWD) is only consistently available in free-text clinical documents. Manual curation is expensive and time consuming. Developing natural language processing (NLP) methods for structuring RWD is thus essential for scaling real-world evidence generation. We propose leveraging patient-level supervision from medical registries, which are often readily available and capture key patient information, for general RWD applications. We conduct an extensive study on 135,107 patients from the cancer registry of a large integrated delivery network (IDN) comprising healthcare systems in five western US states. Our deep-learning methods attain test area under the receiver operating characteristic curve (AUROC) values of 94%-99% for key tumor attributes and comparable performance on held-out data from separate health systems and states. Ablation results demonstrate the superiority of these advanced deep-learning methods. Error analysis shows that our NLP system sometimes even corrects errors in registrar labels.

7.
Clin Transplant ; 37(9): e15011, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37151104

RESUMO

BACKGROUND: Endomyocardial biopsy (EMB) is currently considered the gold standard for diagnosing cardiac allograft rejection. However, significant limitations related to histological interpretation variability are well-recognized. We sought to develop a methodology to evaluate EMB solely based on gene expression, without relying on histology interpretation. METHODS: Sixty-four EMBs were obtained from 47 post-heart transplant recipients, who were evaluated for allograft rejection. EMBs were subjected to mRNA sequencing, in which an unsupervised classification algorithm was used to identify the molecular signatures that best classified the EMBs. Cytokine and natriuretic peptide peripheral blood profiling was also performed. Subsequently, we performed gene network analysis to identify the gene modules and gene ontology to understand their biological relevance. We correlated our findings with the unsupervised and histological classifications. RESULTS: Our algorithm classifies EMBs into three categories based solely on clusters of gene expression: unsupervised classes 1, 2, and 3. Unsupervised and histological classifications were closely related, with stronger gene module-phenotype correlations for the unsupervised classes. Gene ontology enrichment analysis revealed processes impacting on the regulation of cardiac and mitochondrial function, immune response, and tissue injury response. Significant levels of cytokines and natriuretic peptides were detected following the unsupervised classification. CONCLUSION: We have developed an unsupervised algorithm that classifies EMBs into three distinct categories, without relying on histology interpretation. These categories were highly correlated with mitochondrial, immune, and tissue injury response. Significant cytokine and natriuretic peptide levels were detected within the unsupervised classification. If further validated, the unsupervised classification could offer a more objective EMB evaluation.


Assuntos
Transplante de Coração , Humanos , Transplante de Coração/efeitos adversos , Miocárdio/patologia , Biópsia , Citocinas , RNA Mensageiro/genética , Rejeição de Enxerto/etiologia , Rejeição de Enxerto/genética
8.
Sci Rep ; 13(1): 8634, 2023 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-37244938

RESUMO

Radiation therapy induces immunogenic cell death in cancer cells, whereby released endogenous adjuvants are sensed by immune cells to direct adaptive immune responses. TLRs expressed on several immune subtypes recognize innate adjuvants to direct downstream inflammatory responses in part via the adapter protein MyD88. We generated Myd88 conditional knockout mice to interrogate its contribution to the immune response to radiation therapy in distinct immune populations in pancreatic cancer. Surprisingly, Myd88 deletion in Itgax (CD11c)-expressing dendritic cells had little discernable effects on response to RT in pancreatic cancer and elicited normal T cell responses using a prime/boost vaccination strategy. Myd88 deletion in Lck-expressing T cells resulted in similar or worsened responses to radiation therapy compared to wild-type mice and lacked antigen-specific CD8+ T cell responses from vaccination, similar to observations in Myd88-/- mice. Lyz2-specific loss of Myd88 in myeloid populations rendered tumors more susceptible to radiation therapy and elicited normal CD8+ T cell responses to vaccination. scRNAseq in Lyz2-Cre/Myd88fl/fl mice revealed gene signatures in macrophages and monocytes indicative of enhanced type I and II interferon responses, and improved responses to RT were dependent on CD8+ T cells and IFNAR1. Together, these data implicate MyD88 signaling in myeloid cells as a critical source of immunosuppression that hinders adaptive immune tumor control following radiation therapy.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Pancreáticas , Camundongos , Animais , Fator 88 de Diferenciação Mieloide/metabolismo , Monócitos/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/radioterapia , Camundongos Knockout , Adjuvantes Imunológicos/metabolismo , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas
9.
bioRxiv ; 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36711504

RESUMO

Despite pre-clinical murine data supporting T regulatory (Treg) cell depletion as a major mechanism by which anti-CTLA-4 antibodies function in vivo, the two main antibodies tested in patients (ipilimumab and tremelimumab) have failed to demonstrate similar effects. We report analogous findings in an immunocompetent murine model humanized for CTLA-4 and Fcy receptors (hCTLA-4/hFcyR mice), where both ipilimumab and tremelimumab fail to show appreciable Treg depletion. Immune profiling of the tumor microenvironment (TME) in both mice and human samples revealed upregulation of the inhibitory Fcy receptor, FcyRIIB, which limits the ability of the antibody Fc fragment of human anti-CTLA-4 antibodies to induce effective antibody dependent cellular cytotoxicty/phagocytosis (ADCC/ADCP). Blocking FcyRIIB in humanized mice rescues Treg depleting capacity and anti-tumor activity of ipilimumab. For another target, CC motif chemokine receptor 8 (CCR8), which is selectively expressed on tumor infiltrating Tregs, we show that Fc engineering to enhance binding to activating Fc receptors, while limiting binding to the inhibitory Fc receptor, leads to consistent Treg depletion and single-agent activity across multiple tumor models, including B16, MC38 and MB49. These data reveal the importance of reducing engagement to the inhibitory Fc receptor to optimize Treg depletion by TME targeting antibodies. Our results define the inhibitory FcyRIIB receptor as a novel immune checkpoint limiting antibody-mediated Treg depletion in tumors, and demonstrate Fc variant engineering as a means to overcome this limitation and augment efficacy for a repertoire of antibodies currently in use or under clinical evaluation in oncology.

10.
Am J Surg Pathol ; 47(2): 157-171, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36344483

RESUMO

Inflammatory myofibroblastic tumor (IMT) of the uterus is a rare mesenchymal tumor with largely benign behavior; however, a small subset demonstrate aggressive behavior. While clinicopathologic features have been previously associated with aggressive behavior, these reports are based on small series, and these features are imperfect predictors of clinical behavior. IMTs are most commonly driven by ALK fusions, with additional pathogenic molecular alterations being reported only in rare examples of extrauterine IMTs. In this study, a series of 11 uterine IMTs, 5 of which demonstrated aggressive behavior, were evaluated for clinicopathologic variables and additionally subjected to capture-based next-generation sequencing with or without whole-transcriptome RNA sequencing. In the 6 IMTs without aggressive behavior, ALK fusions were the sole pathogenic alteration. In contrast, all 5 aggressive IMTs harbored pathogenic molecular alterations and numerous copy number changes in addition to ALK fusions, with the majority of the additional alterations present in the primary tumors. We combined our series with cases previously reported in the literature and performed statistical analyses to propose a novel clinicopathologic risk stratification score assigning 1 point each for: age above 45 years, size≥5 cm,≥4 mitotic figures per 10 high-power field, and infiltrative borders. No tumors with 0 points had an aggressive outcome, while 21% of tumors with 1 to 2 points and all tumors with ≥3 points had aggressive outcomes. We propose a 2-step classification model that first uses the clinicopathologic risk stratification score to identify low-risk and high-risk tumors, and recommend molecular testing to further classify intermediate-risk tumors.


Assuntos
Granuloma de Células Plasmáticas , Neoplasias de Tecido Conjuntivo e de Tecidos Moles , Feminino , Humanos , Pessoa de Meia-Idade , Quinase do Linfoma Anaplásico/genética , Receptores Proteína Tirosina Quinases/genética , Granuloma de Células Plasmáticas/patologia , Útero/patologia , Medição de Risco
11.
Cancer Inform ; 21: 11769351221136081, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439024

RESUMO

Tumor mutational burden (TMB), a surrogate for tumor neoepitope burden, is used as a pan-tumor biomarker to identify patients who may benefit from anti-program cell death 1 (PD1) immunotherapy, but it is an imperfect biomarker. Multiple additional genomic characteristics are associated with anti-PD1 responses, but the combined predictive value of these features and the added informativeness of each respective feature remains unknown. We evaluated whether machine learning (ML) approaches using proposed determinants of anti-PD1 response derived from whole exome sequencing (WES) could improve prediction of anti-PD1 responders over TMB alone. Random forest classifiers were trained on publicly available anti-PD1 data (n = 104), and subsequently tested on an independent anti-PD1 cohort (n = 69). Both the training and test datasets included a range of cancer types such as non-small cell lung cancer (NSCLC), head and neck squamous cell carcinoma (HNSCC), melanoma, and smaller numbers of patients from other tumor types. Features used include summaries such as TMB and number of frameshift mutations, as well as more gene-level features such as counts of mutations associated with immune checkpoint response and resistance. Both ML algorithms demonstrated area under the receiver-operator curves (AUC) that exceeded TMB alone (AUC 0.63 "human-guided," 0.64 "cluster," and 0.58 TMB alone). Mutations within oncogenes disproportionately modulate anti-PD1 responses relative to their overall contribution to tumor neoepitope burden. The use of a ML algorithm evaluating multiple proposed genomic determinants of anti-PD1 responses modestly improves performance over TMB alone, highlighting the need to integrate other biomarkers to further improve model performance.

12.
Analyst ; 147(19): 4275-4284, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-35997223

RESUMO

Accurate quantitation of antibodies is critical for development of monoclonal antibody therapeutics (mAbs). Therapeutic drug monitoring has been applied to measure levels of mAbs in clinics for dose adjustment for autoimmune disease. Trough levels of mAbs can be a biomarker for cancer immunotherapy. Thus, the deployment of a rapid and universal platform for mAb monitoring may benefit processes ranging from drug development to clinical practice for a wide spectrum of diseases. However, mAb monitoring often requires development and conduct of an individual ligand binding assay such as ELISA, which is impractical to scale. We streamlined quantitation of antibody therapeutics by a nano-surface and molecular-orientation limited (nSMOL) proteolysis assay using LC-MS with a universal reference antibody (refmAb-Q), for accurate multiplexed quantitation of unique signature peptides derived from mAbs. This innovative refmAb-Q nSMOL platform may provide a practical solution for quantitating an ever-increasing number of mAbs from developmental to clinical use settings.


Assuntos
Anticorpos Monoclonais , Espectrometria de Massas em Tandem , Anticorpos Monoclonais/uso terapêutico , Cromatografia Líquida , Ligantes , Peptídeos
13.
Life Sci Alliance ; 5(9)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35487695

RESUMO

Radiation therapy generates extensive cancer cell death capable of promoting tumor-specific immunity. Within the tumor, conventional dendritic cells (cDCs) are known to carry tumor-associated antigens to the draining lymph node (TdLN) where they initiate T-cell priming. How radiation influences cDC migration is poorly understood. Here, we show that immunological efficacy of radiation therapy is dependent on cDC migration in radioimmunogenic tumors. Using photoconvertible mice, we demonstrate that radiation impairs cDC migration to the TdLN in poorly radioimmunogenic tumors. Comparative transcriptional analysis revealed that cDCs in radioimmunogenic tumors express genes associated with activation of endogenous adjuvant signaling pathways when compared with poorly radioimmunogenic tumors. Moreover, an exogenous adjuvant combined with radiation increased the number of migrating cDCs in these poorly radioimmunogenic tumors. Taken together, our data demonstrate that cDC migration play a critical role in the response to radiation therapy.


Assuntos
Células Dendríticas , Linfonodos , Animais , Camundongos , Linfócitos T
14.
Cancer Cell ; 40(4): 410-423.e7, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35413272

RESUMO

Tumor-infiltrating neoantigen-reactive T cells can mediate regression of metastatic gastrointestinal cancers yet remain poorly characterized. We performed immunological screening against personalized neoantigens in combination with single-cell RNA sequencing on tumor-infiltrating lymphocytes from bile duct and pancreatic cancer patients to characterize the transcriptomic landscape of neoantigen-reactive T cells. We found that most neoantigen-reactive CD8+ T cells displayed an exhausted state with significant CXCL13 and GZMA co-expression compared with non-neoantigen-reactive bystander cells. Most neoantigen-reactive CD4+ T cells from a patient with bile duct cancer also exhibited an exhausted phenotype but with overexpression of HOPX or ADGRG1 while lacking IL7R expression. Thus, neoantigen-reactive T cells infiltrating gastrointestinal cancers harbor distinct transcriptomic signatures, which may provide new opportunities for harnessing these cells for therapy.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Gastrointestinais , Antígenos de Neoplasias , Neoplasias Gastrointestinais/genética , Humanos , Linfócitos do Interstício Tumoral , Transcriptoma
15.
J Heart Lung Transplant ; 41(6): 840-848, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35317953

RESUMO

BACKGROUND: Heart transplantation provides a significant improvement in survival and quality of life for patients with end-stage heart disease, however many recipients experience different levels of graft rejection that can be associated with significant morbidities and mortality. Current clinical standard-of-care for the evaluation of heart transplant acute rejection (AR) consists of routine endomyocardial biopsy (EMB) followed by visual assessment by histopathology for immune infiltration and cardiomyocyte damage. We assessed whether the sensitivity and/or specificity of this process could be improved upon by adding RNA sequencing (RNA-seq) of EMBs coupled with histopathological interpretation. METHODS: Up to 6 standard-of-care, or for-cause EMBs, were collected from 26 heart transplant recipients from the prospective observational Clinical Trials of Transplantation (CTOT)-03 study, during the first 12-months post-transplant and subjected to RNA-seq (n = 125 EMBs total). Differential expression and random-forest-based machine learning were applied to develop signatures for classification and prognostication. RESULTS: Leveraging the unique longitudinal nature of this study, we show that transcriptional hallmarks for significant rejection events occur months before the actual event and are not visible using traditional histopathology. Using this information, we identified a prognostic signature for 0R/1R biopsies that with 90% accuracy can predict whether the next biopsy will be 2R/3R. CONCLUSIONS: RNA-seq-based molecular characterization of EMBs shows significant promise for the early detection of cardiac allograft rejection.


Assuntos
Transplante de Coração , Qualidade de Vida , Aloenxertos , Biópsia , Perfilação da Expressão Gênica , Rejeição de Enxerto/diagnóstico , Rejeição de Enxerto/genética , Rejeição de Enxerto/patologia , Humanos , Miocárdio/patologia , Complicações Pós-Operatórias/patologia , Prognóstico , Estudos Prospectivos
16.
Clin Exp Metastasis ; 39(1): 85-99, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33970362

RESUMO

Cancer heterogeneity is a result of genetic mutations within the cancer cells. Their proliferation is not only driven by autocrine functions but also under the influence of cancer microenvironment, which consists of normal stromal cells such as infiltrating immune cells, cancer-associated fibroblasts, endothelial cells, pericytes, vascular and lymphatic channels. The relationship between cancer cells and cancer microenvironment is a critical one and we are just on the verge to understand it on a molecular level. Cancer microenvironment may serve as a selective force to modulate cancer cells to allow them to evolve into more aggressive clones with ability to invade the lymphatic or vascular channels to spread to regional lymph nodes and distant sites. It is important to understand these steps of cancer evolution within the cancer microenvironment towards invasion so that therapeutic strategies can be developed to control or stop these processes.


Assuntos
Neoplasias , Microambiente Tumoral , Células Endoteliais , Genômica , Humanos , Linfonodos/patologia , Neoplasias/irrigação sanguínea , Microambiente Tumoral/genética
17.
J Immunother Cancer ; 9(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34620702

RESUMO

BACKGROUND: Immune checkpoint blockade (ICB) using anti-CTLA-4 and anti-PD-1/PD-L1 has revolutionized the treatment of advanced cancer. However, ICB is effective for only a small fraction of patients, and biomarkers such as expression of PD-L1 in tumor or serum levels of CXCL11 have suboptimal sensitivity and specificity. Exposure-response (E-R) relationships have been observed with other therapeutic monoclonal antibodies. There are many factors influencing E-R relationships, yet several studies have shown that trough levels of anti-PD-1/PD-L1 correlated with clinical outcomes. However, the potential utility of anti-CTLA-4 levels as a biomarker remains unknown. METHODS: Serum was obtained at trough levels at weeks 7 and 12 (after doses 2 and 4) from patients with advanced melanoma who received ipilimumab alone (3 mg/kg every 3 weeks for four treatments) via an expanded access program (NCT00495066). We have successfully established a proteomics assay to measure the concentration of ipilimumab in serum using an liquid chromatography with tandem mass spectrometry-based nanosurface and molecular-orientation limited proteolysis (nSMOL) approach. Serum samples from 38 patients were assessed for trough levels of ipilimumab by the nSMOL assay. RESULTS: We found that trough levels of ipilimumab were higher in patients who developed immune-related adverse events but did not differ based on the presence or absence of disease progression. We found that patients with higher trough levels of ipilimumab had better overall survival when grouped based on ipilimumab trough levels. Trough levels of ipilimumab were inversely associated with pretreatment serum levels of CXCL11, a predictive biomarker we previously identified, and soluble CD25 (sCD25), a prognostic biomarker for advanced melanoma, as well as C reactive protein (CRP) and interleukin (IL)-6 levels at week 7. CONCLUSIONS: Our results suggest that trough levels of ipilimumab may be a useful biomarker for the long-term survival of patients with advanced melanoma treated with ipilimumab. The association of ipilimumab trough levels with pretreatment serum levels of CXCL11 and sCD25 is suggestive of a baseline-driven E-R relationship, and the association of ipilimumab trough levels with on-treatment levels of CRP and IL-6 is suggestive of response-driven E-R relationship. Our findings highlight the potential utility of trough levels of ipilimumab as a biomarker. TRIAL REGISTRATION NUMBER: NCT00495066.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores Tumorais/metabolismo , Ipilimumab/uso terapêutico , Melanoma/tratamento farmacológico , Antineoplásicos Imunológicos/farmacologia , Feminino , Humanos , Ipilimumab/farmacologia , Masculino , Resultado do Tratamento
18.
Oncoimmunology ; 10(1): 1900635, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33796412

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) has traditionally been thought of as an immunologically quiescent tumor type presumably because of a relatively low tumor mutational burden (TMB) and poor responses to checkpoint blockade therapy. However, many PDAC tumors exhibit T cell inflamed phenotypes. The presence of tertiary lymphoid structures (TLS) has recently been shown to be predictive of checkpoint blockade response in melanomas and sarcomas, and are prognostic for survival in PDAC. In order to more comprehensively understand tumor immunity in PDAC patients with TLS, we performed RNA-seq, single and multiplex IHC, flow cytometry and predictive genomic analysis on treatment naïve, PDAC surgical specimens. Forty-six percent of tumors contained distinct T and B cell aggregates reflective of "early-stage TLS" (ES-TLS), which correlated with longer overall and progression-free survival. These tumors had greater CD8+ T cell infiltration but were not defined by previously published TLS gene-expression signatures. ES-TLS+ tumors were enriched for IgG1 class-switched memory B cells and memory CD4+ T cells, suggesting durable immunological memory persisted in these patients. We also observed the presence of active germinal centers (mature-TLS) in 31% of tumors with lymphocyte clusters, whose patients had long-term survival (median 56 months). M-TLS-positive tumors had equivalent overall T cell infiltration to ES-TLS, but were enriched for activated CD4+ memory cells, naive B cells and NK cells. Finally, using a TCGA-PDAC dataset, ES-TLS+ tumors harbored a decreased TMB, but M-TLS with germinal centers expressed significantly more MHCI-restricted neoantigens as determined by an in silico neoantigen prediction method. Interestingly, M-TLS+ tumors also had evidence of increased rates of B cell somatic hypermutation, suggesting that germinal centers form in the presence of high-quality tumor neoantigens leading to increased humoral immunity that confers improved survival for PDAC patients. AbbreviationsTLS: tertiary lymphoid structures; GC: germinal center(s); PDAC: pancreatic ductal adenocarcinoma; RNA-seq: RNA sequencing; BCRseq: B cell receptor sequencing; HEV: high endothelial venule; PNAd: peripheral node addressin; TMB: tumor mutational burden; TCGA: the cancer genome atlas; PAAD: pancreatic adenocarcinoma; FFPE: formalin fixed paraffin embedded; TIME: tumor immune microenvironment.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Estruturas Linfoides Terciárias , Centro Germinativo , Humanos , Imunidade Humoral , Neoplasias Pancreáticas/genética , Sobrevivência , Microambiente Tumoral
19.
Nucleic Acids Res ; 49(W1): W271-W276, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33849075

RESUMO

It is essential to reveal the associations between various omics data for a comprehensive understanding of the altered biological process in human wellness and disease. To date, very few studies have focused on collecting and exhibiting multi-omics associations in a single database. Here, we present iNetModels, an interactive database and visualization platform of Multi-Omics Biological Networks (MOBNs). This platform describes the associations between the clinical chemistry, anthropometric parameters, plasma proteomics, plasma metabolomics, as well as metagenomics for oral and gut microbiome obtained from the same individuals. Moreover, iNetModels includes tissue- and cancer-specific Gene Co-expression Networks (GCNs) for exploring the connections between the specific genes. This platform allows the user to interactively explore a single feature's association with other omics data and customize its particular context (e.g. male/female specific). The users can also register their data for sharing and visualization of the MOBNs and GCNs. Moreover, iNetModels allows users who do not have a bioinformatics background to facilitate human wellness and disease research. iNetModels can be accessed freely at https://inetmodels.com without any limitation.


Assuntos
Bases de Dados Factuais , Microbioma Gastrointestinal , Metabolômica , Metagenômica , Boca/microbiologia , Proteômica , Idoso , Idoso de 80 Anos ou mais , Redes Reguladoras de Genes , Humanos , Pessoa de Meia-Idade , Neoplasias/genética , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/microbiologia , Software
20.
Clin Transl Immunology ; 9(11): e1214, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304583

RESUMO

OBJECTIVES: Genetic or acquired defects in FOXP3+ regulatory T cells (Tregs) play a key role in many immune-mediated diseases including immune dysregulation polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome. Previously, we demonstrated CD4+ T cells from healthy donors and IPEX patients can be converted into functional Treg-like cells by lentiviral transfer of FOXP3 (CD4LVFOXP3). These CD4LVFOXP3 cells have potent regulatory function, suggesting their potential as an innovative therapeutic. Here, we present molecular and preclinical in vivo data supporting CD4LVFOXP3 cell clinical progression. METHODS: The molecular characterisation of CD4LVFOXP3 cells included flow cytometry, qPCR, RNA-seq and TCR-seq. The in vivo suppressive function of CD4LVFOXP3 cells was assessed in xenograft-versus-host disease (xeno-GvHD) and FOXP3-deficient IPEX-like humanised mouse models. The safety of CD4LVFOXP3 cells was evaluated using peripheral blood (PB) humanised (hu)- mice testing their impact on immune response against pathogens, and immune surveillance against tumor antigens. RESULTS: We demonstrate that the conversion of CD4+ T cells to CD4LVFOXP3 cells leads to specific transcriptional changes as compared to CD4+ T-cell transduction in the absence of FOXP3, including upregulation of Treg-related genes. Furthermore, we observe specific preservation of a polyclonal TCR repertoire during in vitro cell production. Both allogeneic and autologous CD4LVFOXP3 cells protect from xeno-GvHD after two sequential infusions of effector T cells. CD4LVFOXP3 cells prevent hyper-proliferation of CD4+ memory T cells in the FOXP3-deficient IPEX-like hu-mice. CD4LVFOXP3 cells do not impede in vivo expansion of antigen-primed T cells or tumor clearance in the PB hu-mice. CONCLUSION: These data support the clinical readiness of CD4LVFOXP3 cells to treat IPEX syndrome and other immune-mediated diseases caused by insufficient or dysfunctional FOXP3+ Tregs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA