Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Res ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742661

RESUMO

AIMS: Atrial fibrillation (AF), the most common cardiac arrhythmia favoring ischemic stroke and heart failure involves left atrial remodeling, fibrosis and a complex interplay between cardiovascular risk factors. This study examined whether activated factor X (FXa) induces pro-remodeling and pro-fibrotic responses in atrial endothelial cells (AECs) and human atrial tissues and determined the underlying mechanisms. METHODS AND RESULTS: AECs were from porcine hearts and human right atrial appendages (RAA) from patients undergoing heart surgery. Protein expression levels were assessed by Western blot and immunofluorescence staining, mRNA levels by RT-qPCR, formation of reactive oxygen species (ROS) and NO using fluorescent probes, thrombin and angiotensin II generation by specific assays, fibrosis by Sirius red staining and senescence by senescence-associated beta-galactosidase (SA-ß-gal) activity.In AECs, FXa increased ROS formation, senescence (SA-ß-gal activity, p53, p21), angiotensin II generation and the expression of pro-inflammatory (VCAM-1, MCP-1), pro-thrombotic (tissue factor), pro-fibrotic (TGF-ß and collagen-1/3a) and pro-remodeling (MMP-2/9) markers whereas eNOS levels and NO formation were reduced. These effects were prevented by inhibitors of FXa but not thrombin, protease-activated receptors antagonists (PAR-1/2) and inhibitors of NADPH oxidases, ACE, AT1R, SGLT1/SGLT2. FXa also increased expression levels of ACE1, AT1R, SGLT1/2 proteins which was prevented by SGLT1/2 inhibitors. Human RAA showed tissue factor mRNA levels that correlated with markers of endothelial activation, pro-remodeling and pro-fibrotic responses and SGLT1/2 mRNA levels. They also showed protein expression levels of ACE1, AT1R, p22phox, SGLT1/2, and immunofluorescence signals of nitrotyrosine and SGLT1/2 colocalized with those of CD31. FXa increased oxidative stress levels which were prevented by inhibitors of the AT1R/NADPH oxidases/SGLT1/2 pathway. CONCLUSIONS: FXa promotes oxidative stress triggering premature endothelial senescence and dysfunction associated with pro-thrombotic, pro-remodeling and pro-fibrotic responses in AECs and in human RAA involving the AT1R/NADPH oxidases/SGLT1/2 pro-oxidant pathway. Targeting this pathway may be of interest to prevent atrial remodeling and the progression of atrial fibrillation substrate.

2.
J Thromb Haemost ; 22(1): 286-299, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37797691

RESUMO

BACKGROUND: COVID-19 is associated with an increased risk of cardiovascular complications. Although cytokines have a predominant role in endothelium damage, the precise molecular mechanisms are far from being elucidated. OBJECTIVES: The present study hypothesized that inflammation in patients with COVID-19 contributes to endothelial dysfunction through redox-sensitive SGLT2 overexpression and investigated the protective effect of SGLT2 inhibition by empagliflozin. METHODS: Human plasma samples were collected from patients with acute, subacute, and long COVID-19 (n = 100), patients with non-COVID-19 and cardiovascular risk factors (n = 50), and healthy volunteers (n = 25). Porcine coronary artery endothelial cells (ECs) were incubated with plasma (10%). Protein expression levels were determined using Western blot analyses and immunofluorescence staining, mRNA expression by quantitative reverse transcription-polymerase chain reaction, and the level of oxidative stress by dihydroethidium staining. Platelet adhesion, aggregation, and thrombin generation were determined. RESULTS: Increased plasma levels of interleukin (IL)-1ß, IL-6, tumor necrosis factor-α, monocyte chemoattractant protein-1, and soluble intercellular adhesion molecule-1 were observed in patients with COVID-19. Exposure of ECs to COVID-19 plasma with high cytokines levels induced redox-sensitive upregulation of SGLT2 expression via proinflammatory cytokines IL-1ß, IL-6, and tumor necrosis factor-α which, in turn, fueled endothelial dysfunction, senescence, NF-κB activation, inflammation, platelet adhesion and aggregation, von Willebrand factor secretion, and thrombin generation. The stimulatory effect of COVID-19 plasma was blunted by neutralizing antibodies against proinflammatory cytokines and empagliflozin. CONCLUSION: In patients with COVID-19, proinflammatory cytokines induced a redox-sensitive upregulation of SGLT2 expression in ECs, which in turn promoted endothelial injury, senescence, platelet adhesion, aggregation, and thrombin generation. SGLT2 inhibition with empagliflozin appeared as an attractive strategy to restore vascular homeostasis in COVID-19.


Assuntos
COVID-19 , Doenças Vasculares , Animais , Humanos , COVID-19/metabolismo , Citocinas/metabolismo , Células Endoteliais/metabolismo , Inflamação/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Síndrome de COVID-19 Pós-Aguda , Espécies Reativas de Oxigênio/metabolismo , Transportador 2 de Glucose-Sódio/metabolismo , Transportador 2 de Glucose-Sódio/farmacologia , Suínos , Trombina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
3.
Commun Biol ; 6(1): 278, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932133

RESUMO

Empagliflozin, a sodium-glucose co-transporter 2 inhibitor developed, has been shown to reduce cardiovascular events in patients with type 2 diabetes and established cardiovascular disease. Several studies have suggested that empagliflozin improves the cardiac energy state which is a partial cause of its potency. However, the detailed mechanism remains unclear. To address this issue, we used a mouse model that enabled direct measurement of cytosolic and mitochondrial ATP levels. Empagliflozin treatment significantly increased cytosolic and mitochondrial ATP levels in the hearts of db/db mice. Empagliflozin also enhanced cardiac robustness by maintaining intracellular ATP levels and the recovery capacity in the infarcted area during ischemic-reperfusion. Our findings suggest that empagliflozin enters cardiac mitochondria and directly causes these effects by increasing mitochondrial ATP via inhibition of NHE1 and Nav1.5 or their common downstream sites. These cardioprotective effects may be involved in the beneficial effects on heart failure seen in clinical trials.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Inibidores do Transportador 2 de Sódio-Glicose , Camundongos , Animais , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Experimental/tratamento farmacológico , Mitocôndrias , Trifosfato de Adenosina
4.
Mediators Inflamm ; 2016: 9063842, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27298519

RESUMO

IL-17A is overexpressed in the lung during acute neutrophilic inflammation. Acetylcholine (ACh) increases IL-8 and Muc5AC production in airway epithelial cells. We aimed to characterize the involvement of nonneuronal components of cholinergic system on IL-8 and Muc5AC production in bronchial epithelial cells stimulated with IL-17A. Bronchial epithelial cells were stimulated with recombinant human IL-17A (rhIL-17A) to evaluate the ChAT expression, the ACh binding and production, the IL-8 release, and the Muc5AC production. Furthermore, the effectiveness of PD098,059 (inhibitor of MAPKK activation), Bay11-7082 (inhibitor of IkBα phosphorylation), Hemicholinium-3 (HCh-3) (choline uptake blocker), and Tiotropium bromide (Spiriva®) (anticholinergic drug) was tested in our in vitro model. We showed that rhIL-17A increased the expression of ChAT, the levels of ACh binding and production, and the IL-8 and Muc5AC production in stimulated bronchial epithelial cells compared with untreated cells. The pretreatment of the cells with PD098,059 and Bay11-7082 decreased the ChAT expression and the ACh production/binding, while HCh-3 and Tiotropium decreased the IL-8 and Muc5AC synthesis in bronchial epithelial cells stimulated with rhIL-17A. IL-17A is involved in the IL-8 and Muc5AC production promoting, via NFκB and ERK1/2 pathway activation, the synthesis of ChAT, and the related activity of autocrine ACh in bronchial epithelial cells.


Assuntos
Acetilcolina/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Interleucina-17/farmacologia , Interleucina-8/metabolismo , Mucina-5AC/metabolismo , NF-kappa B/metabolismo , Comunicação Autócrina/efeitos dos fármacos , Brônquios/citologia , Linhagem Celular , Citometria de Fluxo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
Life Sci ; 152: 107-16, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-27038884

RESUMO

AIMS: IL-17A plays a key role in the persistence of airway inflammation, oxidative stress, and reduction of steroid-sensitivity in COPD. We studied the effect of IL-17A on chromatin remodeling and IL-8 production. MAIN METHODS: We measured the levels of IL-8 and IL-17A in induced sputum supernatants (ISS) from healthy controls (HCs), healthy smokers (HSs), and COPD patients by enzyme-linked immunosorbent assay (ELISA). A human bronchial epithelial cell line (16HBE) was stimulated with ISS from HCs, HSs, or COPD subjects. IL-8 was evaluated in 16HBE by Western blot and real-time polymerase chain reaction (PCR). Histone deacetylase 2 (HDAC2), acetyl histone H3 (Ac-His H3) (k9) and inhibitor kappa kinase alpha (IKKα) levels were evaluated in the nuclear extract by Western blot. Finally, we evaluated the effect of IL-17A depletion in ISS, the silencing of IKKα, and the anti-inflammatory effects of Tiotropium Spiriva® (100nM) on 16HBE. KEY FINDINGS: IL-8 and IL-17A levels were higher in ISS from COPD patients and HSs than from HCs. IL-8 protein and messenger RNA (mRNA) levels were increased in 16HBE stimulated with ISS from COPD patients compared with untreated cells. Furthermore, ISS from COPD patients reduced the nuclear levels of HDAC2 while increasing the activity of both Ac-His H3 (k9) and IKKα in stimulated 16HBE. IL-17A depletion in ISS and the IKKα silencing in 16HBE significantly increased the nuclear levels of HDAC2, reduced Ac-His H3 (k9), and promoted IL-8 synthesis in stimulated 16HBE. Tiotropium controls the proinflammatory activity generated by ISS from COPD patients in 16HBE. SIGNIFICANCE: IL-17A present in the airway of COPD patients, which induces chromatin remodeling, promotes the release of IL-8 in the bronchial epithelium. Tiotropium is able to control this proinflammatory activity.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Células Epiteliais/metabolismo , Interleucina-17/metabolismo , Interleucina-8/metabolismo , Brometo de Tiotrópio/farmacologia , Brônquios/citologia , Brônquios/efeitos dos fármacos , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Histona Desacetilase 2/metabolismo , Histonas/metabolismo , Humanos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fumar/metabolismo , Escarro/metabolismo
6.
Eur J Pharmacol ; 736: 35-43, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-24797786

RESUMO

Cigarette smoke extract (CSE) affects the expression of Choline Acetyl-Transferase (ChAT), muscarinic acetylcholine receptors, and mucin production in bronchial epithelial cells. Mucin 5AC (MUC5AC), muscarinic acetylcholine receptor M3, ChAT expression, acetylcholine levels and acetylcholine binding were measured in a human pulmonary mucoepidermoid carcinoma cell line (H292) stimulated with CSE. We performed ChAT/RNA interference experiments in H292 cells stimulated with CSE to study the role of ChAT/acetylcholine in MUC5AC production. The effects of Hemicholinium-3 (HCh-3) (50 µM) (a potent and selective choline uptake blocker) and Tiotropium bromide (Spiriva(®)) (100 nM), alone or in combination with Salmeterol (SL) and Fluticasone propionate (FP), were tested in this model. MUC5AC, muscarinic acetylcholine receptor M3, ChAT, acetylcholine expression and acetylcholine binding significantly increased in H292 cells stimulated with CSE (5%) compared to untreated cells. HCh-3 reduced acetylcholine binding and MUC5AC production in H292 cells stimulated with CSE. ChAT/RNA interference eliminated the effect of CSE on MUC5AC production. FP reduced ChAT and acetylcholine binding in unstimulated cells, while showing a partial effect in CSE stimulated cells. SL increased the ChAT expression and acetylcholine binding in H292 cells stimulated with or without CSE. Tiotropium, alone or together with FP and SL, reduced acetylcholine binding and MUC5AC production in H292 cells stimulated with CSE. CSE affects the ChAT/acetylcholine expression, increasing MUC5AC production in H292 cells. Pharmacological treatment with anticholinergic drugs reduces the secretion of MUC5AC generated by autocrine acetylcholine activity in airway epithelial cells.


Assuntos
Acetilcolina/metabolismo , Colina O-Acetiltransferase/metabolismo , Misturas Complexas/farmacologia , Mucina-5AC/metabolismo , Nicotiana , Fumaça , Albuterol/análogos & derivados , Albuterol/farmacologia , Androstadienos/farmacologia , Brônquios/citologia , Broncodilatadores/farmacologia , Linhagem Celular Tumoral , Colina O-Acetiltransferase/genética , Antagonistas Colinérgicos/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fluticasona , Hemicolínio 3/farmacologia , Humanos , Inibidores da Captação de Neurotransmissores/farmacologia , Interferência de RNA , Receptor Muscarínico M3/metabolismo , Xinafoato de Salmeterol , Derivados da Escopolamina/farmacologia , Brometo de Tiotrópio
7.
Biochim Biophys Acta ; 1832(12): 1949-58, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23811074

RESUMO

The induction of nitric oxide synthase (iNOS) expression via the signal transducer and activator of transcription 1 (STAT-1) is involved in the mechanism of oxidative/nitrosative stress. We investigated whether acetylcholine (ACh) generates oxidative/nitrosative stress in bronchial epithelial cells during airway inflammation of COPD and evaluated the effects of Tiotropium, a once-daily antimuscarinic drug, and Olodaterol, a long-acting ß2-agonist on these mechanisms. Human bronchial epithelial cells (16-HBE) were stimulated (4h, 37°C) with induced sputum supernatants (ISSs) from healthy controls (HC) (n=10), healthy smokers (HS) (n=10) or COPD patients (n=10), as well as with ACh (from 1µM to 100µM). The activation of STAT-1 pathway (STAT-1Ser727 and STAT-1Tyr701) and iNOS was evaluated in the cell lysates by Western blot analysis as well as nitrotyrosine levels by ELISA, while reactive oxygen species (ROS) were evaluated by flow cytometry. Finally, the effect of Tiotropium (Spiriva®) (100nM), alone or in combination with Olodaterol (1nM), was tested in this model. ISSs from COPD patients significantly increased the phosphorylation of STAT-1Ser727 and STAT-1Tyr701, iNOS and ROS/Nitrotyrosine when compared with ISSs from HC or HS subjects in 16-HBE cells. Furthermore, synthetic ACh increased all these parameters in stimulated 16HBE when compared with untreated cells. Tiotropium and Olodaterol reduced the oxidative/nitrosative stress generated by ACh and ISSs. We concluded that ACh mediated the oxidative/nitrosative stress involving the STAT-1 pathway activation in human bronchial epithelial cells during COPD. ß2-Long acting and antimuscarinic drugs, normally used in the treatment of COPD as bronchodilator, might be able to control these cellular events.


Assuntos
Acetilcolina/farmacologia , Brônquios/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/patologia , Fator de Transcrição STAT1/metabolismo , Western Blotting , Brônquios/citologia , Brônquios/metabolismo , Células Cultivadas , Agonistas Colinérgicos/farmacologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Óxido Nítrico Sintase Tipo II/metabolismo , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT1/antagonistas & inibidores , Fator de Transcrição STAT1/genética , Tirosina/análogos & derivados , Tirosina/metabolismo
8.
Biochim Biophys Acta ; 1822(7): 1079-89, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22440430

RESUMO

We quantified TGF-ß1 and acetylcholine (ACh) concentrations in induced sputum supernatants (ISSs) from 18 healthy controls (HC), 22 healthy smokers (HS) and 21 COPDs. ISSs from HC, HS and COPD as well as rhTGF-ß1 were also tested in neutrophil adhesion and in mAChR2, mAChR3 and ChAT expression experiments in human bronchial epithelial cells (16-HBE). Finally, we evaluated the effects of Olodaterol (a novel inhaled ß(2)-adrenoceptor agonist) and Tiotropium Spiriva®, alone or in combination, on neutrophil adhesion and mAChRs and ChAT expression in stimulated 16-HBE. The results showed that 1) TGF-ß1 and ACh concentrations are increased in ISSs from COPD in comparison to HC and HS, and TGF-ß1 in HS is higher than in HC; 2) ISSs from COPD and HS caused increased neutrophil adhesion to 16-HBE when compared to ISSs from HC. The effect of ISSs from COPD was significantly reduced by TGF-ß1 depletion or by the pretreatment with Olodaterol or Tiotropium alone or in combination, while the effect of ISSs from HS was significantly reduced by the pretreatment with Olodaterol alone; 3) mAChR2, mAChR3 and ChAT expression was increased in 16-HBE stimulated with ISSs from COPD and TGF-ß1 depletion significantly reduced this effect on mAChR3 and ChAT expression; 4) rhTGF-ß1 increased mAChR2, mAChR3 and ChAT expression in 16-HBE; 5) Olodaterol did not affect the expression of mAChRs and ChAT in 16-HBE. Our findings support the use of ß2 long-acting and anticholinergic drugs to control the bronchoconstriction and TGF-ß1-mediated neutrophilic inflammation in COPD.


Assuntos
Acetilcolina/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/uso terapêutico , Antagonistas Colinérgicos/uso terapêutico , Neutrófilos/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Fator de Crescimento Transformador beta1/metabolismo , Acetilcolina/análise , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Idoso , Análise de Variância , Benzoxazinas/farmacologia , Benzoxazinas/uso terapêutico , Broncoconstrição/efeitos dos fármacos , Broncodilatadores/farmacologia , Broncodilatadores/uso terapêutico , Estudos de Casos e Controles , Adesão Celular/efeitos dos fármacos , Linhagem Celular Transformada , Colina O-Acetiltransferase/metabolismo , Antagonistas Colinérgicos/farmacologia , Quimioterapia Combinada , Células Epiteliais/efeitos dos fármacos , Feminino , Citometria de Fluxo , Humanos , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/metabolismo , Receptor Muscarínico M2/metabolismo , Receptor Muscarínico M3/metabolismo , Derivados da Escopolamina/farmacologia , Derivados da Escopolamina/uso terapêutico , Fumar/efeitos adversos , Escarro/química , Brometo de Tiotrópio , Fator de Crescimento Transformador beta1/análise
9.
Life Sci ; 89(1-2): 36-43, 2011 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-21620875

RESUMO

AIMS: Acetylcholine (ACh) is synthesized by Choline Acetyl-Transferase (ChAT) that exerts its physiological effects in airway epithelial cells via muscarinic receptor (MR) activation. We evaluate the effect of ACh stimulation on human bronchial epithelial cells (16-HBE) and test whether cigarette smoke extract (CSE) can modify the basal cellular response to ACh affecting the non-neuronal cholinergic system signalling. MAIN METHODS: ACh stimulated 16-HBE were tested for ACh-binding, Leukotriene B(4) (LTB(4)) release and ERK1/2 and NFkB pathway activation. Additionally, we investigated all the aforementioned parameters as well as ChAT and MR proteins and mRNA expression and endogenous ACh production in CSE-treated 16-HBE. KEY FINDINGS: We showed that ACh induced in 16-HBE, in a concentration-dependent manner, LTB(4) release via the activation of ERK1/2 and NFkB pathways. The addition of Tiotropium (Spiriva®), Gallamine, Telenzepine and 4-DAMP (muscarinic receptor antagonists), as well as of PD 098059 (MAPKK inhibitor) and BAY117082 (inhibitor of IkBα phosphorilation), down-regulated the ACh-induced effects. Additionally, CSE treatment of 16-HBE increased the binding of ACh, and shifted the LTB4 release from the concentration ACh 1µM to 10nM. Finally, we observed that the treatment of 16-HBE with CSE increased the expression of ChAT, M(2) and M(3) and of endogenous ACh production in 16-HBE. Tiotropium regulated the LTB4 release and ACh production in CSE treated 16-HBE. SIGNIFICANCE: CSE increases the pro-inflammatory activity of human bronchial epithelial cells, and promotes the cellular response to lower concentrations of ACh, by affecting the expression of ChAT and MRs. Tiotropium might prevent pro-inflammatory events generated by ACh together with CSE.


Assuntos
Acetilcolina/metabolismo , Brônquios/citologia , Misturas Complexas/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Receptores Muscarínicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fumaça/análise , Análise de Variância , Western Blotting , Brônquios/efeitos dos fármacos , Linhagem Celular , Colina O-Acetiltransferase/metabolismo , Misturas Complexas/química , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Citometria de Fluxo , Regulação da Expressão Gênica/fisiologia , Humanos , Técnicas In Vitro , Leucotrieno B4/metabolismo , NF-kappa B/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/fisiologia , Nicotiana/química
10.
J Pharmacol Exp Ther ; 329(2): 753-63, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19190237

RESUMO

Acetylcholine (ACh), synthesized by choline acetyltransferase (ChAT), and muscarinic M(1), M(2), and M(3) receptors (MRs) are involved in fibroblast proliferation. We evaluated ChAT, MRs, and extracellular signal-regulated kinase (ERK) 1/2 and nuclear factor (NF) kappaB activation in lung fibroblasts from patients with chronic obstructive pulmonary disease (COPD), control smokers, and controls. Human fetal lung fibroblasts (HFL-1) stimulated with interleukin (IL)-1beta, tumor necrosis factor (TNF)-alpha, and cigarette smoke extracts (CSEs) were evaluated for ChAT and MR expression. We tested the effects of ACh on fibroblast proliferation and its ability to bind fibroblasts from patients with COPD, control smokers, controls, and HFL-1 stimulated with IL-1beta, TNF-alpha, and CSE. ChAT, M(1), and M(3) expression and ERK1/2 and NFkappaB activation were increased, whereas M(2) was reduced, in COPD and smoker subjects compared with controls. IL-1beta increased the ChAT and M(3), TNF-alpha down-regulated M(2), and CSE increased ChAT and M(3) expression while down-regulating the expression of M(2) in HFL-1 cells. ACh stimulation increased fibroblast proliferation in patients with COPD, control smokers, and controls, with higher effect in control smokers and patients with COPD and increased HFL-1 proliferation only in CSE-treated cells. The binding of ACh was higher in patients with COPD and in control smokers than in controls and in CSE-treated than in IL-1beta- and TNF-alpha-stimulated HFL-1 cells. Tiotropium (Spiriva; [1alpha,2beta,4beta,5alpha,7beta-7-hydroxydi-2-thienylacetyl)oxy]-9,9-dimethyl-3-oxa-9-azoniatrcyclo[3.3.1.0(24)], C(19)H(22) NO(4)S(2)Br.H(2)O), gallamine triethiodide (C(19)H(22)N(4)O(2)S.2HCl.H(2)O), telenzepine [4,9-d-dihydro-3-methyl-4-[(4-methyl-1piperazinyl) acetyl]-10H-thieno [3,4-b][1,5]benzodiazepine-10-one dihydrobromide, C(30)H(60)I(3)N(3)O(3)], 4-diphenylacetoxy-N-methylpiperidine, PD098059 [2-(2-amino-3methoxyphenyl)-4H-1benzopyran-4-one, C(16)H(13)NO(3)], and BAY 11-7082 [(E)-3-(4-methylphenylsulfonyl)-2-propenetrile, C(10)H(9)NO(2)C], down-regulated the ACh-induced fibroblast proliferation, promoting the MRs and ERK1/2 and NFkappaB pathways involvement in this phenomenon. These results suggest that cigarette smoke might alter the expression of ChAT and MRs, promoting airway remodeling in COPD and that anticholinergic drugs, including tiotropium, might prevent these events.


Assuntos
Proliferação de Células , Colina O-Acetiltransferase/biossíntese , Fibroblastos/metabolismo , Pulmão/patologia , Doença Pulmonar Obstrutiva Crônica/patologia , Receptores Muscarínicos/biossíntese , Fumar/efeitos adversos , Idoso , Western Blotting , Estudos de Casos e Controles , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Fibroblastos/enzimologia , Fibroblastos/patologia , Humanos , Interleucina-1beta/farmacologia , Pulmão/enzimologia , Pulmão/metabolismo , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/enzimologia , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Nicotiana/efeitos adversos , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA