Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EFSA J ; 21(5): e07990, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37197560

RESUMO

Groundwater monitoring is the highest tier in the leaching assessment of plant protection products in the EU. The European Commission requested EFSA for a review by the PPR Panel of the scientific paper of Gimsing et al. (2019) on the design and conduct of groundwater monitoring studies. The Panel concludes that this paper provides many recommendations; however, specific guidance on how to design, conduct and evaluate groundwater monitoring studies for regulatory purposes is missing. The Panel notes that there is no agreed specific protection goal (SPG) at EU level. Also, the SPG has not yet been operationalised in an agreed exposure assessment goal (ExAG). The ExAG describes which groundwater needs to be protected, where and when. Because the design and interpretation of monitoring studies depends on the ExAG, development of harmonised guidance is not yet possible. The development of an agreed ExAG must therefore be given priority. A central question in the design and interpretation of groundwater monitoring studies is that of groundwater vulnerability. Applicants must demonstrate that the selected monitoring sites represent realistic worst-case conditions as specified in the ExAG. Guidance and models are needed to support this step. A prerequisite for the regulatory use of monitoring data is the availability of complete data on the use history of the products containing the respective active substances. Applicants must further demonstrate that monitoring wells are hydrologically connected to the fields where the active substance has been applied. Modelling in combination with (pseudo)tracer experiments would be the preferred option. The Panel concludes that well-conducted monitoring studies provide more realistic exposure assessments and can therefore overrule results from lower tier studies. Groundwater monitoring studies involve a high workload for both regulators and applicants. Standardised procedures and monitoring networks could help to reduce this workload.

2.
EFSA J ; 21(2): e07744, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36818642

RESUMO

Development of adverse outcome pathways (AOPs) for uterine adenocarcinoma can provide a practical tool to implement the EFSA-ECHA Guidance (2018) for the identification of endocrine disruptors in the context of Regulations (EU) No 528/2012 and (EC) No 1107/2009. AOPs can give indications about the strength of the relationship between an adverse outcome (intended as a human health outcome) and chemicals (pesticides but not only) affecting the pathways. In this scientific opinion, the PPR Panel explored the development of AOPs for uterine adenocarcinoma. An evidence-based approach methodology was applied, and literature reviews were produced using a structured framework assuring transparency, objectivity, and comprehensiveness. Several AOPs were developed; these converged to a common critical node, that is increased estradiol availability in the uterus followed by estrogen receptor activation in the endometrium; therefore, a putative AOP network was considered. An uncertainty analysis and a probabilistic quantification of the weight of evidence have been carried out via expert knowledge elicitation for each set of MIEs/KEs/KERs included in individual AOPs. The collected data on the AOP network were evaluated qualitatively, whereas a quantitative uncertainty analysis for weight of the AOP network certainty has not been performed. Recommendations are provided, including exploring further the uncertainties identified in the AOPs and putative AOP network; further methodological developments for quantifying the certainty of the KERs and of the overall AOPs and AOP network; and investigating of NAMs applications in the context of some of the MIEs/KEs currently part of the putative AOP network developed.

3.
Environ Sci Pollut Res Int ; 27(8): 8814-8821, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31975011

RESUMO

The minimum detectable difference (MDD) is a measure of the difference between the means of a treatment and the control that must exist to detect a statistically significant effect. It is a measure at a defined level of probability and a given variability of the data. It provides an indication for the robustness of statistically derived effect thresholds such as the lowest observed effect concentration (LOEC) and the no observed effect concentration (NOEC) when interpreting treatment-related effects on a population exposed to chemicals in semi-field studies (e.g., micro-/mesocosm studies) or field studies. MDD has been proposed in the guidance on tiered risk assessment for plant protection products in edge of field surface waters (EFSA Journal 11(7):3290, 2013), in order to better estimate the robustness of endpoints from such studies for taking regulatory decisions. However, the MDD calculation method as suggested in this framework does not clearly specify the power which is represented by the beta-value (i.e., the level of probability of type II error). This has implications for the interpretation of experimental results, i.e., the derivation of robust effect values and their use in risk assessment of PPPs. In this paper, different methods of MDD calculations are investigated, with an emphasis on their pre-defined levels of type II error-probability. Furthermore, a modification is suggested for an optimal use of the MDD, which ensures a high degree of certainty for decision-makers.


Assuntos
Praguicidas , Medição de Risco/métodos , Magnoliopsida
4.
EFSA J ; 16(6): e05286, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32625927

RESUMO

Following a request from the European Commission, the EFSA Panel on Plant Protection Products and their Residues (PPR Panel) prepared a scientific opinion to provide a comprehensive evaluation of pesticide residues in foods for infants and young children. In its approach to develop this scientific opinion, the EFSA PPR Panel took into account, among the others, (i) the relevant opinions of the Scientific Committee for Food setting a default maximum residue level (MRL) of 0.01 mg/kg for pesticide residues in foods for infants and young children; (ii) the recommendations provided by EFSA Scientific Committee in a guidance on risk assessment of substances present in food intended for infants below 16 weeks of age; (iii) the knowledge on organ/system development in infants and young children. For infants below 16 weeks of age, the EFSA PPR Panel concluded that pesticide residues at the default MRL of 0.01 mg/kg for food for infants and young children are not likely to result in an unacceptable exposure for active substances for which a health-based guidance value (HBGV) of 0.0026 mg/kg body weight (bw) per day or higher applies. Lower MRLs are recommended for active substances with HBGVs below this value. For infants above 16 weeks of age and young children, the established approach for setting HBGVs is considered appropriate. For infants below 16 weeks of age the approach may not be appropriate and the application of the EFSA guidance on risk assessment of substances present in food intended for infants below 16 weeks of age is recommended. The contribution of conventional food to the total exposure to pesticide residues is much higher than that from foods intended for infants and young children. Because of the increased intake of conventional food by young children, these have the highest exposure to pesticide residues, whereas infants 3-6 months of age generally have lower exposure. The impact of cumulative exposure to pesticide residues on infants and young children is not different from the general population and the EFSA cumulative risk assessment methodology is also applicable to these age groups. Residue definitions established under Regulation (EC) No 396/2005 are in general considered appropriate also for foods for infants and young children. However, based on a tier 1 analysis of the hydrolysis potential of pesticides simulating processing, the particular appropriateness of existing residue definitions for monitoring to cover processed food, both intended for infants and young children as well as conventional food, is questionable.

5.
EFSA J ; 16(8): e05377, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32626020

RESUMO

Following a request from EFSA, the Panel on Plant Protection Products and their Residues (PPR) developed an opinion on the state of the art of Toxicokinetic/Toxicodynamic (TKTD) models and their use in prospective environmental risk assessment (ERA) for pesticides and aquatic organisms. TKTD models are species- and compound-specific and can be used to predict (sub)lethal effects of pesticides under untested (time-variable) exposure conditions. Three different types of TKTD models are described, viz., (i) the 'General Unified Threshold models of Survival' (GUTS), (ii) those based on the Dynamic Energy Budget theory (DEBtox models), and (iii) models for primary producers. All these TKTD models follow the principle that the processes influencing internal exposure of an organism, (TK), are separated from the processes that lead to damage and effects/mortality (TD). GUTS models can be used to predict survival rate under untested exposure conditions. DEBtox models explore the effects on growth and reproduction of toxicants over time, even over the entire life cycle. TKTD model for primary producers and pesticides have been developed for algae, Lemna and Myriophyllum. For all TKTD model calibration, both toxicity data on standard test species and/or additional species can be used. For validation, substance and species-specific data sets from independent refined-exposure experiments are required. Based on the current state of the art (e.g. lack of documented and evaluated examples), the DEBtox modelling approach is currently limited to research applications. However, its great potential for future use in prospective ERA for pesticides is recognised. The GUTS model and the Lemna model are considered ready to be used in risk assessment.

6.
EFSA J ; 16(8): e05382, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32626023

RESUMO

The EFSA Panel on Plant Protection Products and their Residues reviewed the guidance on how aged sorption studies for pesticides should be conducted, analysed and used in regulatory assessment. The inclusion of aged sorption is a higher tier in the groundwater leaching assessment. The Panel based its review on a test with three substances taken from a data set provided by the European Crop Protection Association. Particular points of attention were the quality of the data provided, the proposed fitting procedure of aged sorption experiments and the proposed method for combining results obtained from aged sorption studies and lower-tier studies on degradation and adsorption. Aged sorption was a relevant process in all cases studied. The test revealed that the guidance could generally be well applied and resulted in robust and plausible results. The Panel considers the guidance suitable for use in the groundwater leaching assessment after the recommendations in this Scientific Opinion have been implemented, with the exception of the use of field data to derive aged sorption parameters. The Panel noted that the draft guidance could only be used by experienced users because there is no software tool that fully supports the work flow in the guidance document. It is therefore recommended that a user-friendly software tool be developed. Aged sorption lowered the predicted concentration in groundwater. However, because aged sorption experiments may be conducted in different soils than lower-tier degradation and adsorption experiments, it cannot be guaranteed that the higher tier predicts lower concentrations than the lower tier, while lower tiers should be more conservative than higher tiers. To mitigate this problem, the Panel recommends using all available higher- and lower-tier data in the leaching assessment. The Panel further recommends that aged sorption parameters for metabolites be derived only from metabolite-dosed studies. The formation fraction can be derived from parent-dosed degradation studies, provided that the parent and metabolite are fitted with the best-fit model, which is the double first-order in parallel model in the case of aged sorption.

7.
EFSA J ; 15(10): e05007, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32625302

RESUMO

In 2013, EFSA published a comprehensive systematic review of epidemiological studies published from 2006 to 2012 investigating the association between pesticide exposure and many health outcomes. Despite the considerable amount of epidemiological information available, the quality of much of this evidence was rather low and many limitations likely affect the results so firm conclusions cannot be drawn. Studies that do not meet the 'recognised standards' mentioned in the Regulation (EU) No 1107/2009 are thus not suited for risk assessment. In this Scientific Opinion, the EFSA Panel on Plant Protection Products and their residues (PPR Panel) was requested to assess the methodological limitations of pesticide epidemiology studies and found that poor exposure characterisation primarily defined the major limitation. Frequent use of case-control studies as opposed to prospective studies was considered another limitation. Inadequate definition or deficiencies in health outcomes need to be avoided and reporting of findings could be improved in some cases. The PPR Panel proposed recommendations on how to improve the quality and reliability of pesticide epidemiology studies to overcome these limitations and to facilitate an appropriate use for risk assessment. The Panel recommended the conduct of systematic reviews and meta-analysis, where appropriate, of pesticide observational studies as useful methodology to understand the potential hazards of pesticides, exposure scenarios and methods for assessing exposure, exposure-response characterisation and risk characterisation. Finally, the PPR Panel proposed a methodological approach to integrate and weight multiple lines of evidence, including epidemiological data, for pesticide risk assessment. Biological plausibility can contribute to establishing causation.

8.
EFSA J ; 15(3): e04691, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32625422

RESUMO

In 2013, EFSA published a literature review on epidemiological studies linking exposure to pesticides and human health outcome. As a follow up, the EFSA Panel on Plant Protection Products and their residues (PPR Panel) was requested to investigate the plausible involvement of pesticide exposure as a risk factor for Parkinson's disease (PD) and childhood leukaemia (CHL). A systematic literature review on PD and CHL and mode of actions for pesticides was published by EFSA in 2016 and used as background documentation. The Panel used the Adverse Outcome Pathway (AOP) conceptual framework to define the biological plausibility in relation to epidemiological studies by means of identification of specific symptoms of the diseases as AO. The AOP combines multiple information and provides knowledge of biological pathways, highlights species differences and similarities, identifies research needs and supports regulatory decisions. In this context, the AOP approach could help in organising the available experimental knowledge to assess biological plausibility by describing the link between a molecular initiating event (MIE) and the AO through a series of biologically plausible and essential key events (KEs). As the AOP is chemically agnostic, tool chemical compounds were selected to empirically support the response and temporal concordance of the key event relationships (KERs). Three qualitative and one putative AOP were developed by the Panel using the results obtained. The Panel supports the use of the AOP framework to scientifically and transparently explore the biological plausibility of the association between pesticide exposure and human health outcomes, identify data gaps, define a tailored testing strategy and suggests an AOP's informed Integrated Approach for Testing and Assessment (IATA).

9.
Sci Total Environ ; 537: 159-69, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26318547

RESUMO

Pesticides are regulated in Europe and this process includes an environmental risk assessment (ERA) for non-target arthropods (NTA). Traditionally a non-spatial or field trial assessment is used. In this study we exemplify the introduction of a spatial context to the ERA as well as suggest a way in which the results of complex models, necessary for proper inclusion of spatial aspects in the ERA, can be presented and evaluated easily using abundance and occupancy ratios (AOR). We used an agent-based simulation system and an existing model for a widespread carabid beetle (Bembidion lampros), to evaluate the impact of a fictitious highly-toxic pesticide on population density and the distribution of beetles in time and space. Landscape structure and field margin management were evaluated by comparing scenario-based ERAs for the beetle. Source-sink dynamics led to an off-crop impact even when no pesticide was present off-crop. In addition, the impacts increased with multi-year application of the pesticide whereas current ERA considers only maximally one year. These results further indicated a complex interaction between landscape structure and pesticide effect in time, both in-crop and off-crop, indicating the need for NTA ERA to be conducted at landscape- and multi-season temporal-scales. Use of AOR indices to compare ERA outputs facilitated easy comparison of scenarios, allowing simultaneous evaluation of impacts and planning of mitigation measures. The landscape and population ERA approach also demonstrates that there is a potential to change from regulation of a pesticide in isolation, towards the consideration of pesticide management at landscape scales and provision of biodiversity benefits via inclusion and testing of mitigation measures in authorisation procedures.


Assuntos
Conservação dos Recursos Naturais/métodos , Poluição Ambiental/estatística & dados numéricos , Modelos Teóricos , Praguicidas , Agricultura , Poluição Ambiental/prevenção & controle , Medição de Risco
10.
Environ Toxicol Chem ; 30(11): 2465-72, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21898550

RESUMO

Current pesticide risk assessment does not specifically consider amphibians. Amphibians in the aquatic environment (aquatic life stages or postmetamorphic aquatic amphibians) and terrestrial living juvenile or adult amphibians are assumed to be covered by the risk assessment for aquatic invertebrates and fish, or mammals and birds, respectively. This procedure has been evaluated as being sufficiently protective regarding the acute risk posed by a number of pesticides to aquatic amphibian life stages (eggs, larvae). However, it is unknown whether the exposure and sensitivity of terrestrial living amphibians are comparable to mammalian and avian exposure and sensitivity. We reviewed the literature on dermal pesticide absorption and toxicity studies for terrestrial life stages of amphibians, focusing on the dermal exposure pathway, that is, through treated soil or direct overspray. In vitro studies demonstrated that cutaneous absorption of chemicals is significant and that chemical percutaneous passage, P (cm/h), is higher in amphibians than in mammals. In vivo, the rapid and substantial uptake of the herbicide atrazine from treated soil by toads (Bufo americanus) has been described. Severe toxic effects on various amphibian species have been reported for field-relevant application rates of different pesticides. In general, exposure and toxicity studies for terrestrial amphibian life stages are scarce, and the reported data indicate the need for further research, especially in light of the global amphibian decline.


Assuntos
Anfíbios/metabolismo , Monitoramento Ambiental , Estágios do Ciclo de Vida/efeitos dos fármacos , Praguicidas/toxicidade , Animais , Organismos Aquáticos/efeitos dos fármacos , Atrazina/farmacocinética , Atrazina/toxicidade , Herbicidas/toxicidade , Praguicidas/farmacocinética , Medição de Risco , Absorção Cutânea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA