Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Infect Dis ; 10(5): 1793-1807, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38648355

RESUMO

Chagas disease, caused by Trypanosoma cruzi, stands as the primary cause of dilated cardiomyopathy in the Americas. Macrophages play a crucial role in the heart's response to infection. Given their functional and phenotypic adaptability, manipulating specific macrophage subsets could be vital in aiding essential cardiovascular functions including tissue repair and defense against infection. PPARα are ligand-dependent transcription factors involved in lipid metabolism and inflammation regulation. However, the role of fenofibrate, a PPARα ligand, in the activation profile of cardiac macrophages as well as its effect on the early inflammatory and fibrotic response in the heart remains unexplored. The present study demonstrates that fenofibrate significantly reduces not only the serum activity of tissue damage biomarker enzymes (LDH and GOT) but also the circulating proportions of pro-inflammatory monocytes (CD11b+ LY6Chigh). Furthermore, both CD11b+ Ly6Clow F4/80high macrophages (MΦ) and recently differentiated CD11b+ Ly6Chigh F4/80high monocyte-derived macrophages (MdMΦ) shift toward a resolving phenotype (CD206high) in the hearts of fenofibrate-treated mice. This shift correlates with a reduction in fibrosis, inflammation, and restoration of ventricular function in the early stages of Chagas disease. These findings encourage the repositioning of fenofibrate as a potential ancillary immunotherapy adjunct to antiparasitic drugs, addressing inflammation to mitigate Chagas disease symptoms.


Assuntos
Cardiomiopatia Chagásica , Fenofibrato , Macrófagos , Fenofibrato/farmacologia , Fenofibrato/uso terapêutico , Animais , Camundongos , Cardiomiopatia Chagásica/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Miocárdio/patologia , Masculino , Trypanosoma cruzi/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Miocardite/tratamento farmacológico , Miocardite/parasitologia
2.
ACS Infect Dis ; 9(2): 213-220, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36661566

RESUMO

Chronic cardiomyopathy is one of the most relevant outcomes of Chagas disease associated with parasite persistence and exacerbated inflammatory response. Fenofibrate, a third generation fibric acid derivative and peroxisome proliferator-activated receptor-α ligand, is involved in the regulation of inflammatory response. However, the participation of macrophages in this scenario has not been elucidated. Here we show, for the first time, that macrophages play a fundamental role in the fenofibrate-mediated modulation of heart pro-inflammatory response and fibrosis caused by the infection with Trypanosoma cruzi. Furthermore, macrophages are required for fenofibrate to improve the loss of ventricular function and this restoration correlates with an anti-inflammatory microenvironment. Understanding the contributions of macrophages to the healing properties of fenofibrate reinforces its potential use as a therapeutic drug, with the aim of helping to solve a public health problem, such as chronic Chagas disease.


Assuntos
Cardiomiopatias , Cardiomiopatia Chagásica , Doença de Chagas , Fenofibrato , Humanos , Fenofibrato/farmacologia , Fenofibrato/uso terapêutico , Cardiomiopatia Chagásica/tratamento farmacológico , Cardiomiopatia Chagásica/complicações , Cardiomiopatia Chagásica/parasitologia , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/complicações , Macrófagos
3.
Front Immunol ; 12: 782891, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925364

RESUMO

Benznidazole (Bzl), the drug of choice in many countries for the treatment of Chagas disease, leads to parasite clearance in the early stages of infection and contributes to immunomodulation. In addition to its parasiticidal effect, Bzl inhibits the NF-κB pathway. In this regard, we have previously described that this occurs through IL-10/STAT3/SOCS3 pathway. PI3K pathway is involved in the regulation of the immune system by inhibiting NF-κB pathway through STAT3. In this work, the participation of PI3K in the immunomodulatory effects of Bzl in cardiac and immune cells, the main targets of Chagas disease, was further studied. For that, we use a murine primary cardiomyocyte culture and a monocyte/macrophage cell line (RAW 264.7), stimulated with LPS in presence of LY294002, an inhibitor of PI3K. Under these conditions, Bzl could neither increase SOCS3 expression nor inhibit the NOS2 mRNA expression and the release of NOx, both in cardiomyocytes and macrophages. Macrophages are crucial in the development of Chronic Chagas Cardiomyopathy. Thus, to deepen our understanding of how Bzl acts, the expression profile of M1-M2 macrophage markers was evaluated. Bzl inhibited the release of NOx (M1 marker) and increased the expression of Arginase I (M2 marker) and a negative correlation was found between them. Besides, LPS increased the expression of pro-inflammatory cytokines. Bzl treatment not only inhibited this effect but also increased the expression of typical M2-macrophage markers like Mannose Receptor, TGF-ß, and VEGF-A. Moreover, Bzl increased the expression of PPAR-γ and PPAR-α, known as key regulators of macrophage polarization. PI3K directly regulates M1-to-M2 macrophage polarization. Since p110δ, catalytic subunit of PI3Kδ, is highly expressed in immune cells, experiments were carried out in presence of CAL-101, a specific inhibitor of this subunit. Under this condition, Bzl could neither increase SOCS3 expression nor inhibit NF-κB pathway. Moreover, Bzl not only failed to inhibit the expression of pro-inflammatory cytokines (M1 markers) but also could not increase M2 markers. Taken together these results demonstrate, for the first time, that the anti-inflammatory effect of Bzl depends on PI3K activity in a cell line of murine macrophages and in primary culture of neonatal cardiomyocytes. Furthermore, Bzl-mediated increase expression of M2-macrophage markers involves the participation of the p110δ catalytic subunit of PI3Kδ.


Assuntos
Anti-Inflamatórios/farmacologia , Cardiomiopatia Chagásica/tratamento farmacológico , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Nitroimidazóis/farmacologia , Animais , Animais Recém-Nascidos , Anti-Inflamatórios/uso terapêutico , Cardiomiopatia Chagásica/imunologia , Cromonas/farmacologia , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Modelos Animais de Doenças , Feminino , Humanos , Lipopolissacarídeos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Morfolinas/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/metabolismo , Nitroimidazóis/uso terapêutico , Cultura Primária de Células , Células RAW 264.7
4.
Front Immunol ; 10: 2955, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31993046

RESUMO

Chagas disease is caused by Trypanosoma cruzi infection and represents an important public health concern in Latin America. Macrophages are one of the main infiltrating leukocytes in response to infection. Parasite persistence could trigger a sustained activation of these cells, contributing to the damage observed in this pathology, particularly in the heart. HP24, a pyridinecarboxylic acid derivative, is a new PPARγ ligand that exerts anti-inflammatory and pro-angiogenic effects. The aim of this work was to deepen the study of the mechanisms involved in the pro-angiogenic and anti-inflammatory effects of HP24 in T. cruzi-infected macrophages, which have not yet been elucidated. We show for the first time that HP24 increases expression of VEGF-A and eNOS through PI3K/AKT/mTOR and PPARγ pathways and that HP24 inhibits iNOS expression and NO release, a pro-inflammatory mediator, through PPARγ-dependent mechanisms. Furthermore, this study shows that HP24 modulates H2O2 production in a PPARγ-dependent manner. It is also demonstrated that this new PPARγ ligand inhibits the NF-κB pathway. HP24 inhibits IKK phosphorylation and IκB-α degradation, as well as p65 translocation to the nucleus in a PPARγ-dependent manner. In Chagas disease, both the sustained increment in pro-inflammatory mediators and microvascular abnormalities are crucial aspects for the generation of cardiac damage. Elucidating the mechanism of action of new PPARγ ligands is highly attractive, given the fact that it can be used as an adjuvant therapy, particularly in the case of Chagas disease in which inflammation and tissue remodeling play an important role in the pathophysiology of this disease.


Assuntos
Indutores da Angiogênese/imunologia , Antiprotozoários/administração & dosagem , Doença de Chagas/imunologia , Ácidos Isonicotínicos/administração & dosagem , Macrófagos/imunologia , Espécies Reativas de Nitrogênio/imunologia , Espécies Reativas de Oxigênio/imunologia , Animais , Anti-Inflamatórios/administração & dosagem , Antiprotozoários/química , Doença de Chagas/genética , Doença de Chagas/parasitologia , Humanos , Peróxido de Hidrogênio/imunologia , Ácidos Isonicotínicos/química , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/imunologia , PPAR gama/genética , PPAR gama/imunologia , Fosfatidilinositol 3-Quinases/imunologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/fisiologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/imunologia
5.
Redox Rep ; 22(6): 265-271, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27670786

RESUMO

OBJECTIVES: Reports investigating the effects of antioxidants on obesity have provided contradictory results. We have previously demonstrated that treatment with the antioxidant N-acetylcysteine (NAC) inhibits cellular triglyceride (Tg) accumulation as well as total cellular monoamine oxidase A (MAOA) expression in 3T3-L1 mature adipocytes (Calzadilla et al., Redox Rep. 2013;210-218). Here we analyzed the role of NAC on adipogenic differentiation pathway. METHODS: Assays were conducted using 3T3-L1 preadipocytes (undifferentiated cells: CC), which are capable of differentiating into mature adipocytes (differentiated cells: DC). We studied the effects of different doses of NAC (0.01 or 1 mM) on DC, to evaluate cellular expression of phospho-JNK½ (pJNK½), phospho-ERK½ (pERK½) and, mitochondrial expression of citrate synthase, fumarate hydratase and MAOA. RESULTS: Following the differentiation of preadipocytes, an increase in the expression levels of pJNK½ and pERK½ was observed, together with mitotic clonal expansion (MCE). We found that both doses of NAC decreased the expression of pJNK½ and pERK½. Consistent with these results, NAC significantly inhibited MCE and modified the expression of different mitochondrial proteins. DISCUSSION: Our results suggested that NAC could inhibit Tg and mitochondrial protein expression by preventing both MCE and kinase phosphorylation.


Assuntos
Acetilcisteína/farmacologia , Adipócitos/efeitos dos fármacos , Antioxidantes/farmacologia , Células 3T3-L1 , Adipócitos/citologia , Animais , Diferenciação Celular/efeitos dos fármacos , Camundongos , Monoaminoxidase/metabolismo , Fosforilação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA