Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Biol Futur ; 75(2): 219-233, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38416361

RESUMO

The grey maize weevil, Tanymecus dilaticollis, is a polyphagous species, which is among the most important pests of maize in Southeastern Europe. The efficacy of commercial products with two species of entomopathogenic nematodes (EPNs), Steinernema carpocapsae and Heterorhabditis bacteriophora, was investigated against adults of the grey maize weevil under laboratory conditions. Nemastar®, containing S. carpocapsae was more effective on T. dilaticollis adults than Nematop® containing H. bacteriophora, when applied uniformly to the surface of the soil, on Petri dishes containing T. dilaticollis adults. Results showed that S. carpocapsae rates of 83-333 infective juveniles/adult caused > 94% mortality in T. dilaticollis adults, whereas H. bacteriophora caused 27-61%, adult mortality, after exposure of insects to the commercial products of EPNs for 15 days. The infection rates of EPNs increased with concentration applied and ranged from 70-83% and 19-64% for Nemastar® and Nematop®, respectively. Subsequent field and semi-field tests were conducted with Nemastar® (application rate of 50 million S. carpocapsae per 100 m2) in maize crops with biological (mycoinsecticide Naturalis®, biofungicides and fertilizers) and chemical seed treatment (Gaucho® FS 600; active ingredient: imidacloprid) in Knezha, Bulgaria. Nematodes were found only in the dead specimens, in open plots and cages sprayed with the commercial nematode product. Nematode sprayings contributed for higher maize yields in the open maize plots in the fields with different seed treatments. We suggest that the use of powder formulation of S. carpocapsae in combination with biologically treated maize seeds can contribute to minimize the use of chemical insecticides against the grey maize weevil. The results obtained can be used as a base to further tests to ascertain the efficacy of EPNs products before they can be recommended for use in the integrated approach to T. dilaticollis management.


Assuntos
Controle Biológico de Vetores , Gorgulhos , Animais , Gorgulhos/parasitologia , Controle Biológico de Vetores/métodos , Zea mays/parasitologia , Nematoides/efeitos dos fármacos
2.
J Invertebr Pathol ; 124: 23-30, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25450951

RESUMO

The historic genus Pleistophora (Plistophora) is a highly polyphyletic clade with invertebrate Microsporidia reassigned to several new genera since the 1980s. Two genera, Endoreticulatus and Cystosporogenes, clearly separate into distinct but closely related clades based on small subunit ribosomal RNA analysis but are included in different families that are each polyphyletic. A microsporidium with morphology resembling the Endoreticulatus/Cystosporogenes clade was isolated from the grasshopper Poecilimon thoracicus from a site in Northwest Bulgaria. It produced intense infections in the digestive tract of the host but no behavioral changes were noted in infected individuals. Prevalence of the microsporidium increased over the active feeding season yearly. Mature spores were oval and measured 2.58±0.21 µm×1.34±0.24 µm, with 16 to approximately 32 spores in a parasitophorous vacuole. The spores were uninucleate and polar filament coils numbered 8-9 situated in a single row. The spore polaroplast consisted of an anterior lamellar section and a posterior vesicular section, and the posterior vacuole was reduced. Analyses of a 1221 bp partial SSU-rRNA sequence indicated that the isolate is more closely related to the Endoreticulatus clade than to Cystosporogenes, but shows earlier phylogenetic separation from species infecting Lepidoptera and represents a new species, Endoreticulatus poecilimonae. To compare sequences of Endoreticulatus spp. from Lepidoptera to those infecting other insect orders, an isolate, Microsporidium itiitiMalone (1985), described from the Argentine stem weevil, Listronotus bonariensis, was sequenced. Like the grasshopper isolate, the weevil isolate is closely related but basal to the lepidopteran Endoreticulatus clade. The original description combined with the new sequence data confirms species status and permits transfer of the isolate from Microsporidium, a genus erected for microsporidian species of uncertain taxonomic status, to Endoreticulatus.


Assuntos
Gafanhotos/microbiologia , Microsporídios não Classificados/classificação , Filogenia , Animais , Sequência de Bases , Microsporídios não Classificados/citologia , Microsporídios não Classificados/genética , Dados de Sequência Molecular , Especificidade da Espécie
3.
J Invertebr Pathol ; 105(1): 1-10, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20435042

RESUMO

Several species of microsporidia are important chronic pathogens of Lymantria dispar in Europe but have never been recovered from North American gypsy moth populations. The major issue for their introduction into North American L. dispar populations is concern about their safety to native non-target insects. In this study, we evaluated the susceptibility of sympatric non-target Lepidoptera to two species of microsporidia, Nosema lymantriae and Vairimorpha disparis, isolated from European populations of L. dispar and applied in field plots in Slovakia. Application of ultra low volume sprays of the microsporidia maximized coverage of infective spores in a complex natural environment and, thus, exposure of non-target species to the pathogens. Of 653 non-target larvae collected from plots treated with V. disparis in 2002, 18 individual larvae representing nine species in four families were infected. These plots were monitored for two subsequent seasons and V. disparis was not recovered from non-target species. Of 2571 non-target larvae collected in N. lymantriae-treated sites, one larva was found to be infected. Both species of microsporidia, particularly N. lymantriae, appear to have a very narrow host range in the field, even when an inundative technique is used for their introduction. V. disparis infections in L. dispar exceeded 40% of recovered larvae in the treated study sites; infection rates were lower in sites sprayed with N. lymantriae. Several naturally-occurring pathogens were recorded from the non-target species. The most common pathogen, isolated from 21 species in eight families, was a microsporidium in the genus Cystosporogenes.


Assuntos
Especificidade de Hospedeiro , Lepidópteros/microbiologia , Microsporídios/patogenicidade , Nosema/patogenicidade , Animais , Larva/microbiologia , Controle Biológico de Vetores/métodos , Eslováquia
4.
J Invertebr Pathol ; 91(2): 105-14, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16410011

RESUMO

A new microsporidian parasite Nosema chrysorrhoeae n. sp., isolated in Bulgaria from the browntail moth (Euproctis chrysorrhoea L.), is described. Its life cycle includes two sequential developmental cycles that are similar to the general developmental cycles of the Nosema-like microsporidia and are indistinguishable from those of two Nosema spp. from Lymantria dispar. The primary cycle takes place in the midgut tissues and produces binucleate primary spores. The secondary developmental cycle takes place exclusively in the silk glands and produces binucleate environmental spores. N. chrysorrhoeae is specific to the browntail moth. Phylogenetic analysis based on the ssu rRNA gene sequence places N. chrysorrhoeae in the Nosema/Vairimorpha clade, with the microsporidia from lymantriid and hymenopteran hosts. Partial sequences of the lsu rRNA gene and ITS of related species Nosema kovacevici (Purrini K., Weiser J., 1975. Natürliche Feinde des Goldafters, Euproctis chrysorrhoea L., im Gebiet von Kosovo, FSR Jugoslawien. Anzeiger fuer Schädlingskunde, Pflanzen-Umweltschutz, 48, 11-12), Nosema serbica Weiser, 1963 and Nosema sp. from Lymantria monacha was obtained and compared with N. chrysorrhoeae. The molecular data indicate the necessity of future taxonomic reevaluation of the genera Nosema and Vairimorpha.


Assuntos
Mariposas/microbiologia , Nosema/classificação , Nosema/isolamento & purificação , Filogenia , Animais , Bulgária , DNA Fúngico/análise , DNA Fúngico/genética , DNA Ribossômico/análise , DNA Ribossômico/genética , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Células Epiteliais/ultraestrutura , Genes de RNAr/genética , Estágios do Ciclo de Vida , Músculos/microbiologia , Músculos/patologia , Músculos/ultraestrutura , Nosema/genética , Nosema/crescimento & desenvolvimento , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA