Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 6(5): 1896-1905, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37043630

RESUMO

Bacterial infection is a major problem with diabetic wounds that may result in nonhealing chronic ulcers. Here, we report an approach to antibacterial hydrogel dressings for enhanced treatment of infected skin wounds. A fibrous hydrogel was derived from cellulose nanocrystals that were modified with dopamine and cross-linked with gelatin. The hydrogel was loaded with gentamicin, an antibiotic drug. Enhanced antibacterial hydrogel performance resulted from (i) a highly specific sequestration of Fe3+ ions (much needed by bacteria) from the wound exudate and (ii) a dynamic exchange between gentamicin released from the hydrogel and Fe3+ ions withdrawn from the wound exudate. Such exchange was possible due to the high value of the binding constant of Fe3+ ions to dopamine. The hydrogel did not affect the metabolic activity of skin-related cells and showed enhanced antibacterial performance against common wound pathogens such as S. aureus and P. aeruginosa. Furthermore, it promoted healing of infected diabetic wounds due to a synergistic antibacterial effect providing the dynamic exchange between Fe3+ ions and gentamicin. This work provides a strategy for the design of dual-function wound dressings, with both starving and killing bacteria and enhanced wound healing performance.


Assuntos
Diabetes Mellitus , Hidrogéis , Humanos , Hidrogéis/química , Staphylococcus aureus , Dopamina , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Bandagens , Gentamicinas/farmacologia , Gentamicinas/uso terapêutico , Bactérias , Pseudomonas aeruginosa
2.
Int J Mol Sci ; 23(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35628177

RESUMO

Messenger RNA (mRNA) is currently of great interest as a new category of therapeutic agent, which could be used for prevention or treatment of various diseases. For this mRNA requires effective delivery systems that will protect it from degradation, as well as allow cellular uptake and mRNA release. Random poly(lysine-co-isoleucine) polypeptides were synthesized and investigated as possible carriers for mRNA delivery. The polypeptides obtained under lysine:isoleucine monomer ratio equal to 80/20 were shown to give polyplexes with smaller size, positive ζ-potential and more than 90% encapsulation efficacy. The phase inversion method was proposed as best way for encapsulation of mRNA into polyplexes, which are based on obtained amphiphilic copolymers. These copolymers showed efficacy in protection of bound mRNA towards ribonuclease and lower toxicity as compared to lysine homopolymer. The poly(lysine-co-isoleucine) polypeptides showed greater than poly(ethyleneimine) efficacy as vectors for transfection of cells with green fluorescent protein and firefly luciferase encoding mRNAs. This allows us to consider obtained copolymers as promising candidates for mRNA delivery applications.


Assuntos
Isoleucina , Lisina , Isoleucina/genética , Lisina/genética , Poli A , Polímeros , RNA Mensageiro/genética , Transfecção
3.
Polymers (Basel) ; 12(5)2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32397208

RESUMO

Photo-triggered release of biopharmaceutical drugs inside the cells is a challenging direction of modern science, which requires obtaining new polymeric systems. The interpolyelectrolyte complexes (IPECs) of poly-l-lysine with heparin capable of encapsulation of genetic constructions-such as model oligonucleotide, siRNA, and pDNA-were obtained. Poly-l-lysine to heparin ratios were optimized to provide the appropriate release kinetics of genetic material from the polyplex. In order to impart the obtained IPEC with photosensitive properties, the linker was synthesized as based on 4-brommethyl-3-nitrobenzoic acid. The conditions and kinetics of photosensitive linker destruction were carefully studied. The colloid particles of IPEC were modified with Cy3 probe and their cellular internalization was investigated by flow cytometry method. The efficacy of photosensitive IPECs as siRNA and pDNA delivery system was evaluated.

4.
Pharmaceutics ; 11(7)2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31284414

RESUMO

Chitosan has been extensively studied as a genetic drug delivery platform. However, its efficiency is limited by the strength of DNA and RNA binding. Expecting a reduced binding strength of cargo with chitosan, we proposed including heparin as a competing polyanion in the polyplexes. We developed chitosan-heparin nanoparticles by a one-step process for the local delivery of oligonucleotides. The size of the polyplexes was dependent on the mass ratio of polycation to polyanion. The mechanism of oligonucleotide release was pH-dependent and associated with polyplex swelling and collapse of the polysaccharide network. Inclusion of heparin enhanced the oligonucleotide release from the chitosan-based polyplexes. Furthermore, heparin reduced the toxicity of polyplexes in the cultured cells. The cell uptake of chitosan-heparin polyplexes was equal to that of chitosan polyplexes, but heparin increased the transfection efficiency of the polyplexes two-fold. The application of chitosan-heparin small interfering RNA (siRNA) targeted to vascular endothelial growth factor (VEGF) silencing of ARPE-19 cells was 25% higher. Overall, chitosan-heparin polyplexes showed a significant improvement of gene release inside the cells, transfection, and gene silencing efficiency in vitro, suggesting that this fundamental strategy can further improve the transfection efficiency with application of non-viral vectors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA