Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Respir Crit Care Med ; 207(12): 1565-1575, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37212596

RESUMO

Rationale: Indirect airway hyperresponsiveness (AHR) is a highly specific feature of asthma, but the underlying mechanisms responsible for driving indirect AHR remain incompletely understood. Objectives: To identify differences in gene expression in epithelial brushings obtained from individuals with asthma who were characterized for indirect AHR in the form of exercise-induced bronchoconstriction (EIB). Methods: RNA-sequencing analysis was performed on epithelial brushings obtained from individuals with asthma with EIB (n = 11) and without EIB (n = 9). Differentially expressed genes (DEGs) between the groups were correlated with measures of airway physiology, sputum inflammatory markers, and airway wall immunopathology. On the basis of these relationships, we examined the effects of primary airway epithelial cells (AECs) and specific epithelial cell-derived cytokines on both mast cells (MCs) and eosinophils (EOS). Measurements and Main Results: We identified 120 DEGs in individuals with and without EIB. Network analyses suggested critical roles for IL-33-, IL-18-, and IFN-γ-related signaling among these DEGs. IL1RL1 expression was positively correlated with the density of MCs in the epithelial compartment, and IL1RL1, IL18R1, and IFNG were positively correlated with the density of intraepithelial EOS. Subsequent ex vivo modeling demonstrated that AECs promote sustained type 2 (T2) inflammation in MCs and enhance IL-33-induced T2 gene expression. Furthermore, EOS increase the expression of IFNG and IL13 in response to both IL-18 and IL-33 as well as exposure to AECs. Conclusions: Circuits involving epithelial interactions with MCs and EOS are closely associated with indirect AHR. Ex vivo modeling indicates that epithelial-dependent regulation of these innate cells may be critical in indirect AHR and modulating T2 and non-T2 inflammation in asthma.


Assuntos
Asma , Hipersensibilidade Respiratória , Humanos , Interleucina-18 , Interleucina-33/genética , Células Epiteliais/patologia , Inflamação , Imunidade Inata
2.
J Allergy Clin Immunol ; 151(6): 1484-1493, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36708815

RESUMO

BACKGROUND: Mast cells (MCs) within the airway epithelium in asthma are closely related to airway dysfunction, but cross talk between airway epithelial cells (AECs) and MCs in asthma remains incompletely understood. Human rhinovirus (RV) infections are key triggers for asthma progression, and AECs from individuals with asthma may have dysregulated antiviral responses. OBJECTIVE: We utilized primary AECs in an ex vivo coculture model system to examine cross talk between AECs and MCs after epithelial rhinovirus infection. METHODS: Primary AECs were obtained from 11 children with asthma and 10 healthy children, differentiated at air-liquid interface, and cultured in the presence of laboratory of allergic diseases 2 (LAD2) MCs. AECs were infected with rhinovirus serogroup A 16 (RV16) for 48 hours. RNA isolated from both AECs and MCs underwent RNA sequencing. Direct effects of epithelial-derived interferons on LAD2 MCs were examined by real-time quantitative PCR. RESULTS: MCs increased expression of proinflammatory and antiviral genes in AECs. AECs demonstrated a robust antiviral response after RV16 infection that resulted in significant changes in MC gene expression, including upregulation of genes involved in antiviral responses, leukocyte activation, and type 2 inflammation. Subsequent ex vivo modeling demonstrated that IFN-ß induces MC type 2 gene expression. The effects of AEC donor phenotype were small relative to the effects of viral infection and the presence of MCs. CONCLUSIONS: There is significant cross talk between AECs and MCs, which are present in the epithelium in asthma. Epithelial-derived interferons not only play a role in viral suppression but also further alter MC immune responses including specific type 2 genes.


Assuntos
Asma , Infecções por Enterovirus , Infecções por Picornaviridae , Criança , Humanos , Interferons , Rhinovirus/fisiologia , Mastócitos/metabolismo , Epitélio/metabolismo , Células Epiteliais , Antivirais/farmacologia , Imunidade
3.
Eur Respir J ; 60(2)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35027395

RESUMO

BACKGROUND: Eosinophils are implicated as effector cells in asthma, but the functional implications of the precise location of eosinophils in the airway wall is poorly understood. We aimed to quantify eosinophils in the different compartments of the airway wall and associate these findings with clinical features of asthma and markers of airway inflammation. METHODS: In this cross-sectional study, we utilised design-based stereology to accurately partition the numerical density of eosinophils in both the epithelial compartment and the subepithelial space (airway wall area below the basal lamina including the submucosa) in individuals with and without asthma and related these findings to airway hyperresponsiveness (AHR) and features of airway inflammation. RESULTS: Intraepithelial eosinophils were linked to the presence of asthma and endogenous AHR, the type that is most specific for asthma. In contrast, both intraepithelial and subepithelial eosinophils were associated with type 2 (T2) inflammation, with the strongest association between IL5 expression and intraepithelial eosinophils. Eosinophil infiltration of the airway wall was linked to a specific mast cell phenotype that has been described in asthma. We found that interleukin (IL)-33 and IL-5 additively increased cysteinyl leukotriene (CysLT) production by eosinophils and that the CysLT LTC4 along with IL-33 increased IL13 expression in mast cells and altered their protease profile. CONCLUSIONS: We conclude that intraepithelial eosinophils are associated with endogenous AHR and T2 inflammation and may interact with intraepithelial mast cells via CysLTs to regulate airway inflammation.


Assuntos
Asma , Eosinófilos , Estudos Transversais , Eosinófilos/metabolismo , Humanos , Inflamação/metabolismo , Sistema Respiratório
4.
Mucosal Immunol ; 13(4): 584-594, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32103153

RESUMO

Thymic stromal lymphopoietin (TSLP), an epithelial cell-derived cytokine, exhibits both pro-inflammatory and pro-homeostatic properties depending on the context and tissues in which it is expressed. It remains unknown whether TSLP has a similar dual role in the airways, where TSLP is known to promote allergic inflammation. Here we show that TSLP receptor (TSLPR)-deficient mice (Tslpr-/-) and mice treated with anti-TSLP antibodies exhibited increased airway inflammation and morbidity rates after bleomycin-induced tissue damage. We found that signaling through TSLPR on non-hematopoietic cells was sufficient for TSLP's protective function. Consistent with this finding, we showed that TSLP reduces caspase-1 and caspase-3 activity levels in primary human bronchial epithelial cells treated with bleomycin via Bcl-xL up-regulation. These observations were recapitulated in vivo by observing that Tslpr-/- mice showed reduced Bcl-xL expression that paralleled increased lung caspase-1 and caspase-3 activity levels and IL-1ß concentrations in the bronchial-alveolar lavage fluid. Our studies reveal a novel contribution for TSLP in preventing damage-induced airway inflammation.


Assuntos
Apoptose/efeitos dos fármacos , Caspase 1/metabolismo , Citocinas/farmacologia , Substâncias Protetoras/farmacologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Animais , Apoptose/genética , Biomarcadores , Bleomicina/efeitos adversos , Caspase 3/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Imunoglobulinas/metabolismo , Imuno-Histoquímica , Inflamação/tratamento farmacológico , Inflamação/etiologia , Inflamação/metabolismo , Camundongos , Camundongos Knockout , Ligação Proteica , Receptores de Citocinas/metabolismo , Mucosa Respiratória/patologia , Doenças Respiratórias/tratamento farmacológico , Doenças Respiratórias/etiologia , Doenças Respiratórias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Proteína bcl-X/genética , Proteína bcl-X/metabolismo , Linfopoietina do Estroma do Timo
5.
Crit Care Med ; 48(1): e48-e57, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31714400

RESUMO

OBJECTIVES: Sepsis, a life-threatening organ dysfunction caused by a dysregulated host response to infection, is a leading cause of death and disability among children worldwide. Identifying sepsis in pediatric patients is difficult and can lead to treatment delay. Our objective was to assess the host proteomic response to infection utilizing an aptamer-based multiplexed proteomics approach to identify novel serum protein changes that might help distinguish between pediatric sepsis and infection-negative systemic inflammation and hence can potentially improve sensitivity and specificity of the diagnosis of sepsis over current clinical criteria approaches. DESIGN: Retrospective, observational cohort study. SETTING: PICU and cardiac ICU, Seattle Children's Hospital, Seattle, WA. PATIENTS: A cohort of 40 children with clinically overt sepsis and 30 children immediately postcardiopulmonary bypass surgery (infection-negative systemic inflammation control subjects) was recruited. Children with sepsis had a confirmed or suspected infection, two or more systemic inflammatory response syndrome criteria, and at least cardiovascular and/or pulmonary organ dysfunction. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Serum samples from 35 of the sepsis and 28 of the bypass surgery subjects were available for screening with an aptamer-based proteomic platform that measures 1,305 proteins to search for large-scale serum protein expression pattern changes in sepsis. A total of 111 proteins were significantly differentially expressed between the sepsis and control groups, using the linear models for microarray data (linear modeling) and Boruta (decision trees) R packages, with 55 being previously identified in sepsis patients. Weighted gene correlation network analysis helped identify 76 proteins that correlated highly with clinical sepsis traits, 27 of which had not been previously reported in sepsis. CONCLUSIONS: The serum protein changes identified with the aptamer-based multiplexed proteomics approach used in this study can be useful to distinguish between sepsis and noninfectious systemic inflammation.


Assuntos
Proteínas Sanguíneas/análise , Proteômica/métodos , Sepse/sangue , Sepse/diagnóstico , Aptâmeros de Peptídeos , Criança , Estudos de Coortes , Humanos , Estudos Retrospectivos , Sepse/genética
6.
Nat Immunol ; 20(2): 129-140, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30664762

RESUMO

Basophils are evolutionarily conserved in vertebrates, despite their small numbers and short life span, suggesting that they have beneficial roles in maintaining health. However, these roles are not fully defined. Here we demonstrate that basophil-deficient mice exhibit reduced bacterial clearance and increased morbidity and mortality in the cecal ligation and puncture (CLP) model of sepsis. Among the several proinflammatory mediators that we measured, tumor necrosis factor (TNF) was the only cytokine that was significantly reduced in basophil-deficient mice after CLP. In accordance with that observation, we found that mice with genetic ablation of Tnf in basophils exhibited reduced systemic concentrations of TNF during endotoxemia. Moreover, after CLP, mice whose basophils could not produce TNF, exhibited reduced neutrophil and macrophage TNF production and effector functions, reduced bacterial clearance, and increased mortality. Taken together, our results show that basophils can enhance the innate immune response to bacterial infection and help prevent sepsis.


Assuntos
Basófilos/imunologia , Endotoxemia/imunologia , Imunidade Inata , Fator de Necrose Tumoral alfa/imunologia , Transferência Adotiva , Animais , Basófilos/metabolismo , Ceco/microbiologia , Modelos Animais de Doenças , Endotoxemia/microbiologia , Endotoxemia/terapia , Microbioma Gastrointestinal , Humanos , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Taxa de Sobrevida , Fator de Necrose Tumoral alfa/genética
7.
Front Immunol ; 10: 3159, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32047499

RESUMO

Human lung fibroblasts (HLFs) treated with the viral mimetic polyinosine-polycytidylic acid (poly I:C) form an extracellular matrix (ECM) enriched in hyaluronan (HA) that avidly binds monocytes and lymphocytes. Mast cells are important innate immune cells in both asthma and acute respiratory infections including respiratory syncytial virus (RSV); however, the effect of RSV on HA dependent mast cell adhesion and/or function is unknown. To determine if RSV infection of HLFs leads to the formation of a HA-enriched ECM that binds and enhances mast cell activity primary HLFs were infected with RSV for 48 h prior to leukocyte binding studies using a fluorescently labeled human mast cell line (LUVA). Parallel HLFs were harvested for characterization of HA production by ELISA and size exclusion chromatography. In separate experiments, HLFs were infected as above for 48 h prior to adding LUVA cells to HLF wells. Co-cultures were incubated for 48 h at which point media and cell pellets were collected for analysis. The role of the hyaladherin tumor necrosis factor-stimulated gene 6 (TSG-6) was also assessed using siRNA knockdown. RSV infection of primary HLFs for 48 h enhanced HA-dependent LUVA binding assessed by quantitative fluorescent microscopy. This coincided with increased HLF HA synthase (HAS) 2 and HAS3 expression and decreased hyaluronidase (HYAL) 2 expression leading to increased HA accumulation in the HLF cell layer and the presence of larger HA fragments. Separately, LUVAs co-cultured with RSV-infected HLFs for 48 h displayed enhanced production of the mast cell proteases, chymase, and tryptase. Pre-treatment with the HA inhibitor 4-methylumbelliferone (4-MU) and neutralizing antibodies to CD44 (HA receptor) decreased mast cell protease expression in co-cultured LUVAs implicating a direct role for HA. TSG-6 expression was increased over the 48-h infection. Inhibition of HLF TSG-6 expression by siRNA knockdown led to decreased LUVA binding suggesting an important role for this hyaladherin for LUVA adhesion in the setting of RSV infection. In summary, RSV infection of HLFs contributes to inflammation via HA-dependent mechanisms that enhance mast cell binding as well as mast cell protease expression via direct interactions with the ECM.


Assuntos
Matriz Extracelular/imunologia , Fibroblastos , Ácido Hialurônico/metabolismo , Mastócitos , Infecções por Vírus Respiratório Sincicial/imunologia , Adesão Celular/imunologia , Células Cultivadas , Quimases/biossíntese , Técnicas de Cocultura , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Fibroblastos/imunologia , Fibroblastos/metabolismo , Fibroblastos/virologia , Humanos , Pulmão/imunologia , Pulmão/virologia , Mastócitos/imunologia , Mastócitos/metabolismo , Vírus Sincicial Respiratório Humano , Triptases/biossíntese
8.
Immunol Rev ; 282(1): 188-197, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29431211

RESUMO

Mast cells are hematopoietic progenitor-derived, granule-containing immune cells that are widely distributed in tissues that interact with the external environment, such as the skin and mucosal tissues. It is well-known that mast cells are significantly involved in IgE-mediated allergic reactions, but because of their location, it has also been long hypothesized that mast cells can act as sentinel cells that sense pathogens and initiate protective immune responses. Using mast cell or mast cell protease-deficient murine models, recent studies by our groups and others indicate that mast cells have pleiotropic regulatory roles in immunological responses against pathogens. In this review, we discuss studies that demonstrate that mast cells can either promote host resistance to infections caused by bacteria and fungi or contribute to dysregulated immune responses that can increase host morbidity and mortality. Overall, these studies indicate that mast cells can influence innate immune responses against bacterial and fungal infections via multiple mechanisms. Importantly, the contribution of mast cells to infection outcomes depends in part on the infection model, including the genetic approach used to assess the influence of mast cells on host immunity, hence highlighting the complexity of mast cell biology in the context of innate immune responses.


Assuntos
Infecções Bacterianas/imunologia , Mastócitos/imunologia , Micoses/imunologia , Animais , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata
9.
JCI Insight ; 2(21)2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29093264

RESUMO

Phospholipase A2 (PLA2) enzymes regulate the formation of eicosanoids and lysophospholipids that contribute to allergic airway inflammation. Secreted PLA2 group X (sPLA2-X) was recently found to be increased in the airways of asthmatics and is highly expressed in airway epithelial cells and macrophages. In the current study, we show that allergen exposure increases sPLA2-X in humans and in mice, and that global deletion of Pla2g10 results in a marked reduction in airway hyperresponsiveness (AHR), eosinophil and T cell trafficking to the airways, airway occlusion, generation of type-2 cytokines by antigen-stimulated leukocytes, and antigen-specific immunoglobulins. Further, we found that Pla2g10-/- mice had reduced IL-33 levels in BALF, fewer type-2 innate lymphoid cells (ILC2s) in the lung, less IL-33-induced IL-13 expression in mast cells, and a marked reduction in both the number of newly recruited macrophages and the M2 polarization of these macrophages in the lung. These results indicate that sPLA2-X serves as a central regulator of both innate and adaptive immune response to proteolytic allergen.


Assuntos
Imunidade Adaptativa/imunologia , Alérgenos/imunologia , Asma/imunologia , Fosfolipases A2 do Grupo X/imunologia , Imunidade Inata/imunologia , Fosfolipases A2/imunologia , Fosfolipases A2/metabolismo , Animais , Citocinas/imunologia , Modelos Animais de Doenças , Eicosanoides/análise , Feminino , Deleção de Genes , Fosfolipases A2 do Grupo X/genética , Fosfolipases A2 do Grupo X/metabolismo , Imunoglobulinas , Inflamação , Interleucina-13/metabolismo , Interleucina-33/metabolismo , Leucócitos/imunologia , Pulmão/imunologia , Pulmão/metabolismo , Macrófagos , Mastócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
10.
J Allergy Clin Immunol ; 139(1): 323-334, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27302551

RESUMO

BACKGROUND: Mast cells are significantly involved in IgE-mediated allergic reactions; however, their roles in health and disease are incompletely understood. OBJECTIVE: We aimed to define the proteome contained in mast cell releasates on activation to better understand the factors secreted by mast cells that are relevant to the contribution of mast cells in diseases. METHODS: Bone marrow-derived cultured mast cells (BMCMCs) and peritoneal cell-derived mast cells were used as "surrogates" for mucosal and connective tissue mast cells, respectively, and their releasate proteomes were analyzed by mass spectrometry. RESULTS: Our studies showed that BMCMCs and peritoneal cell-derived mast cells produced substantially different releasates following IgE-mediated activation. Moreover, we observed that the transglutaminase coagulation factor XIIIA (FXIIIA) was one of the most abundant proteins contained in the BMCMC releasates. Mast cell-deficient mice exhibited increased FXIIIA plasma and activity levels as well as reduced bleeding times, indicating that mast cells are more efficient in their ability to downregulate FXIIIA than in contributing to its amounts and functions in homeostatic conditions. We found that human chymase and mouse mast cell protease-4 (the mouse homologue of human chymase) had the ability to reduce FXIIIA levels and function via proteolytic degradation. Moreover, we found that chymase deficiency led to increased FXIIIA amounts and activity, as well as reduced bleeding times in homeostatic conditions and during sepsis. CONCLUSIONS: Our study indicates that the mast cell protease content can shape its releasate proteome. Moreover, we found that chymase plays an important role in the regulation of FXIIIA via proteolytic degradation.


Assuntos
Quimases/metabolismo , Fator XIII/metabolismo , Mastócitos/metabolismo , Animais , Medula Óssea , Células Cultivadas , Homeostase/imunologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Peritônio , Proteólise , Proteoma , Sepse/imunologia
11.
Am J Respir Cell Mol Biol ; 55(2): 264-74, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26934097

RESUMO

The mechanisms that contribute to homeostasis of the immune system in sepsis are largely unknown. One study suggests a potential detrimental role for thymic stromal lymphopoietin (TSLP) in sepsis; however, the immune-regulatory effects of TSLP on myeloid cells within the intestinal microenvironment suggest the contrary. Our objective was to clarify TSLP's role in sepsis. Cecal ligation and puncture was performed in mice with total or myeloid-specific deficiency in the TSLP receptor (TSLPR). Survival was monitored closely, peritoneal fluids and plasma were analyzed for markers of inflammation, and myeloid cell numbers and their ability to produce inflammatory mediators was determined. The interaction of TSLP with TSLPR in myeloid cells contributed to mouse survival after septic peritonitis. Mice with TSLPR deficiency in myeloid cells displayed excessive local and systemic inflammation levels (e.g., increased inflammatory cell and cytokine levels) relative to control mice. Moreover, hepatic injury was exacerbated in mice with TSLPR deficiency in their myeloid cells. However, the enhanced inflammatory response did not affect the ability of these mice to clear bacteria. Resident neutrophils and macrophages from septic mice with TSLPR deficiency exhibited an increased ability to produce proinflammatory cytokines. Collectively, our findings suggest that the effects of TSLP on myeloid cells are crucial in reducing the multiple organ failure that is associated with systemic inflammation, which highlights the significance of this cytokine in modulating the host response to infection and in reducing the risks of sepsis development.


Assuntos
Citocinas/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Sepse/metabolismo , Sepse/patologia , Animais , Regulação para Baixo , Humanos , Imunoglobulinas/deficiência , Imunoglobulinas/metabolismo , Inflamação/complicações , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , Ligação Proteica , Receptores de Citocinas/deficiência , Receptores de Citocinas/metabolismo , Sepse/complicações , Transdução de Sinais , Análise de Sobrevida , Linfopoietina do Estroma do Timo
12.
J Allergy Clin Immunol ; 133(5): 1448-55, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24220317

RESUMO

BACKGROUND: Exercise-induced bronchoconstriction (EIB) is a prototypical feature of indirect airway hyperresponsiveness. Mast cells are implicated in EIB, but the characteristics, regulation, and function of mast cells in patients with EIB are poorly understood. OBJECTIVES: We sought to examine mast cell infiltration of the airway epithelium in patients with EIB and the regulation of mast cell phenotype and function by epithelially derived cytokines. METHODS: Endobronchial biopsy specimens, epithelial brushings, and induced sputum were obtained from asthmatic patients with and without EIB and healthy control subjects. Mast cell proteases were quantified by using quantitative PCR, and mast cell density was quantified by using design-based stereology. Airway epithelial responses to wounding and osmotic stress were assessed in primary airway epithelial cells and ex vivo murine lung tissue. Mast cell granule development and function were examined in cord blood-derived mast cells. RESULTS: Tryptase and carboxypeptidase A3 expression in epithelial brushings and epithelial mast cell density were selectively increased in the asthma group with EIB. An in vitro scratch wound initiated the release of thymic stromal lymphopoietin, which was greater in epithelial cells derived from asthmatic patients. Osmotic stress induced the release of IL-33 from explanted murine lungs, which was increased in allergen-treated mice. Thymic stromal lymphopoietin combined with IL-33 increased tryptase and carboxypeptidase A3 immunostaining in mast cell precursors and selectively increased cysteinyl leukotriene formation by mast cells in a manner that was independent of in vitro sensitization. CONCLUSIONS: Mast cell infiltration of the epithelium is a critical determinant of indirect airway hyperresponsiveness, and the airway epithelium might serve as an important regulator of the development and function of this mast cell population.


Assuntos
Asma Induzida por Exercício/imunologia , Citocinas/imunologia , Regulação da Expressão Gênica/imunologia , Interleucinas/imunologia , Mastócitos/imunologia , Mucosa Respiratória/imunologia , Animais , Asma Induzida por Exercício/patologia , Linhagem Celular , Feminino , Humanos , Interleucina-33 , Pulmão/imunologia , Pulmão/patologia , Masculino , Mastócitos/patologia , Camundongos , Mucosa Respiratória/patologia , Escarro/imunologia , Linfopoietina do Estroma do Timo
13.
Am J Pathol ; 181(3): 875-86, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22901752

RESUMO

Mouse mast cell protease 4 (mMCP-4), the mouse counterpart of human mast cell chymase, is thought to have proinflammatory effects in innate or adaptive immune responses associated with mast cell activation. However, human chymase can degrade the proinflammatory cytokine TNF, a mediator that can be produced by mast cells and many other cell types. We found that mMCP-4 can reduce levels of mouse mast cell-derived TNF in vitro through degradation of transmembrane and soluble TNF. We assessed the effects of interactions between mMCP-4 and TNF in vivo by analyzing the features of a classic model of polymicrobial sepsis, cecal ligation and puncture (CLP), in C57BL/6J-mMCP-4-deficient mice versus C57BL/6J wild-type mice, and in C57BL/6J-Kit(W-sh/W-sh) mice containing adoptively transferred mast cells that were either wild type or lacked mMCP-4, TNF, or both mediators. The mMCP-4-deficient mice exhibited increased levels of intraperitoneal TNF, higher numbers of peritoneal neutrophils, and increased acute kidney injury after CLP, and also had significantly higher mortality after this procedure. Our findings support the conclusion that mMCP-4 can enhance survival after CLP at least in part by limiting detrimental effects of TNF, and suggest that mast cell chymase may represent an important negative regulator of TNF in vivo.


Assuntos
Quimases/metabolismo , Inflamação/enzimologia , Proteólise , Sepse/enzimologia , Sepse/patologia , Serina Endopeptidases/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Membrana Celular/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Inflamação/sangue , Inflamação/complicações , Inflamação/patologia , Contagem de Leucócitos , Ligadura , Mastócitos/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Neutrófilos/patologia , Sepse/sangue , Sepse/complicações , Serina Endopeptidases/deficiência , Solubilidade , Análise de Sobrevida
14.
Blood ; 118(26): 6930-8, 2011 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-22001390

RESUMO

It has been reported that the intracellular antiapoptotic factor myeloid cell leukemia sequence 1 (Mcl-1) is required for mast cell survival in vitro, and that genetic manipulation of Mcl-1 can be used to delete individual hematopoietic cell populations in vivo. In the present study, we report the generation of C57BL/6 mice in which Cre recombinase is expressed under the control of a segment of the carboxypeptidase A3 (Cpa3) promoter. C57BL/6-Cpa3-Cre; Mcl-1(fl/fl) mice are severely deficient in mast cells (92%-100% reduced in various tissues analyzed) and also have a marked deficiency in basophils (58%-78% reduced in the compartments analyzed), whereas the numbers of other hematopoietic cell populations exhibit little or no changes. Moreover, Cpa3-Cre; Mcl-1(fl/fl) mice exhibited marked reductions in the tissue swelling and leukocyte infiltration that are associated with both mast cell- and IgE-dependent passive cutaneous anaphylaxis (except at sites engrafted with in vitro-derived mast cells) and a basophil- and IgE-dependent model of chronic allergic inflammation, and do not develop IgE-dependent passive systemic anaphylaxis. Our findings support the conclusion that Mcl-1 is required for normal mast cell and basophil development/survival in vivo in mice, and also suggest that Cpa3-Cre; Mcl-1(fl/fl) mice may be useful in analyzing the roles of mast cells and basophils in health and disease.


Assuntos
Basófilos/metabolismo , Carboxipeptidases A/metabolismo , Mastócitos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Basófilos/patologia , Western Blotting , Carboxipeptidases A/genética , Contagem de Células , Células Cultivadas , Doença Crônica , Feminino , Citometria de Fluxo , Hipersensibilidade/genética , Hipersensibilidade/metabolismo , Imunoglobulina E/imunologia , Imunoglobulina E/metabolismo , Inflamação/genética , Inflamação/metabolismo , Integrases/genética , Integrases/metabolismo , Leucócitos/metabolismo , Leucócitos/patologia , Masculino , Mastócitos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteína de Sequência 1 de Leucemia de Células Mieloides , Anafilaxia Cutânea Passiva/imunologia , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética
15.
J Clin Invest ; 121(10): 4180-91, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21926462

RESUMO

Mast cell degranulation is important in the pathogenesis of anaphylaxis and allergic disorders. Many animal venoms contain components that can induce mast cell degranulation, and this has been thought to contribute to the pathology and mortality caused by envenomation. However, we recently reported evidence that mast cells can enhance the resistance of mice to the venoms of certain snakes and that mouse mast cell-derived carboxypeptidase A3 (CPA3) can contribute to this effect. Here, we investigated whether mast cells can enhance resistance to the venom of the Gila monster, a toxic component of that venom (helodermin), and the structurally similar mammalian peptide, vasoactive intestinal polypeptide (VIP). Using 2 types of mast cell-deficient mice, as well as mice selectively lacking CPA3 activity or the chymase mouse mast cell protease-4 (MCPT4), we found that mast cells and MCPT4, which can degrade helodermin, can enhance host resistance to the toxicity of Gila monster venom. Mast cells and MCPT4 also can limit the toxicity associated with high concentrations of VIP and can reduce the morbidity and mortality induced by venoms from 2 species of scorpions. Our findings support the notion that mast cells can enhance innate defense by degradation of diverse animal toxins and that release of MCPT4, in addition to CPA3, can contribute to this mast cell function.


Assuntos
Carboxipeptidases A/fisiologia , Mastócitos/enzimologia , Venenos de Escorpião/toxicidade , Serina Endopeptidases/fisiologia , Peptídeo Intestinal Vasoativo/toxicidade , Peçonhas/toxicidade , Sequência de Aminoácidos , Animais , Carboxipeptidases A/deficiência , Carboxipeptidases A/genética , Peptídeos e Proteínas de Sinalização Intercelular , Lagartos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Dados de Sequência Molecular , Peptídeos/antagonistas & inibidores , Peptídeos/genética , Peptídeos/toxicidade , Venenos de Escorpião/antagonistas & inibidores , Serina Endopeptidases/deficiência , Serina Endopeptidases/genética , Peptídeo Intestinal Vasoativo/antagonistas & inibidores , Peptídeo Intestinal Vasoativo/genética
16.
Am J Pathol ; 176(2): 926-38, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20035049

RESUMO

We used mast cell-engrafted genetically mast cell-deficient C57BL/6-Kit(W-sh/W-sh) mice to investigate the roles of mast cells and mast cell-derived tumor necrosis factor in two models of severe bacterial infection. In these mice, we confirmed findings derived from studies of mast cell-deficient WBB6F(1)-Kit(W/W-v) mice indicating that mast cells can promote survival in cecal ligation and puncture (CLP) of moderate severity. However, we found that the beneficial role of mast cells in this setting can occur independently of mast cell-derived tumor necrosis factor. By contrast, using mast cell-engrafted C57BL/6-Kit(W-sh/W-sh) mice, we found that mast cell-derived tumor necrosis factor can increase mortality during severe CLP and can also enhance bacterial growth and hasten death after intraperitoneal inoculation of Salmonella typhimurium. In WBB6F(1)-Kit(W-sh/W-sh) mice, mast cells enhanced survival during moderately severe CLP but did not significantly change the survival observed in severe CLP. Our findings in three types of genetically mast cell-deficient mice thus support the hypothesis that, depending on the circumstances (including mouse strain background, the nature of the mutation resulting in a mast cell deficiency, and type and severity of infection), mast cells can have either no detectable effect or opposite effects on survival during bacterial infections, eg, promoting survival during moderately severe CLP associated with low mortality but, in C57BL/6-Kit(W-sh/W-sh) mice, increasing mortality during severe CLP or infection with S. typhimurium.


Assuntos
Infecções Bacterianas/mortalidade , Mastócitos/metabolismo , Proteínas Proto-Oncogênicas c-kit/genética , Fator de Necrose Tumoral alfa/farmacologia , Animais , Infecções Bacterianas/genética , Infecções Bacterianas/metabolismo , Infecções Bacterianas/terapia , Progressão da Doença , Feminino , Imunoterapia Adotiva/métodos , Mastócitos/transplante , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-kit/metabolismo , Salmonelose Animal/genética , Salmonelose Animal/metabolismo , Salmonelose Animal/mortalidade , Salmonelose Animal/terapia , Salmonella typhimurium/fisiologia , Índice de Gravidade de Doença , Fator de Necrose Tumoral alfa/metabolismo
17.
Nat Med ; 14(4): 392-8, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18376408

RESUMO

Sepsis is a complex, incompletely understood and often fatal disorder, typically accompanied by hypotension, that is considered to represent a dysregulated host response to infection. Neurotensin (NT) is a 13-amino-acid peptide that, among its multiple effects, induces hypotension. We find that intraperitoneal and plasma concentrations of NT are increased in mice after severe cecal ligation and puncture (CLP), a model of sepsis, and that mice treated with a pharmacological antagonist of NT, or NT-deficient mice, show reduced mortality during severe CLP. In mice, mast cells can degrade NT and reduce NT-induced hypotension and CLP-associated mortality, and optimal expression of these effects requires mast cell expression of neurotensin receptor 1 and neurolysin. These findings show that NT contributes to sepsis-related mortality in mice during severe CLP and that mast cells can lower NT concentrations, and suggest that mast cell-dependent reduction in NT levels contributes to the ability of mast cells to enhance survival after CLP.


Assuntos
Mastócitos/metabolismo , Neurotensina/metabolismo , Sepse/metabolismo , Animais , Degranulação Celular , Modelos Animais de Doenças , Feminino , Humanos , Hipotensão/metabolismo , Hipotensão/prevenção & controle , Masculino , Mastócitos/fisiologia , Metaloendopeptidases/metabolismo , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Neurotensina/antagonistas & inibidores , Neurotensina/sangue , Neurotensina/deficiência , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptores de Neurotensina/metabolismo , Sepse/sangue
18.
Immunol Rev ; 217: 304-28, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17498068

RESUMO

Observations of increased numbers of mast cells at sites of chronic inflammation have been reported for over a hundred years. Light and electron microscopic evidence of mast cell activation at such sites, taken together with the known functions of the diverse mediators, cytokines, and growth factors that can be secreted by appropriately activated mast cells, have suggested a wide range of possible functions for mast cells in promoting (or suppressing) many features of chronic inflammation. Similarly, these and other lines of evidence have implicated mast cells in a variety of adaptive or pathological responses that are associated with persistent inflammation at the affected sites. Definitively characterizing the importance of mast cells in chronic inflammation in humans is difficult. However, mice that genetically lack mast cells, especially those which can undergo engraftment with wildtype or genetically altered mast cells, provide a means to investigate the importance of mast cells and specific mast cell functions or products in diverse models of chronic inflammation. Such work has confirmed that mast cells can significantly influence multiple features of chronic inflammatory responses, through diverse effects that can either promote or, perhaps more surprisingly, suppress aspects of these responses.


Assuntos
Inflamação/imunologia , Mastócitos/imunologia , Doença Aguda , Animais , Doença Crônica , Modelos Animais de Doenças , Imunidade Inata , Imunoglobulina E/imunologia , Inflamação/terapia , Mastócitos/efeitos dos fármacos , Mastócitos/ultraestrutura , Camundongos , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo
19.
J Immunol ; 176(4): 2272-8, 2006 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16455983

RESUMO

Mast cells (MC), supposedly long-lived cells, play a key role in allergy and are important contributors to other inflammatory conditions in which they undergo hyperplasia. In humans, stem cell factor (SCF) is the main regulator of MC growth, differentiation, and survival. Although human MC numbers may also be regulated by apoptotic cell death, there have been no reports concerning the role of the extrinsic apoptotic pathway mediated by death receptors in these cells. We examined expression and function of death receptors for Fas ligand and TRAIL in human MC. Although the MC leukemia cell line HMC-1 and human lung-derived MC expressed both Fas and TRAIL-R, MC lines derived from cord blood (CBMC) expressed only TRAIL-R. Activation of TRAIL-R resulted in caspase 3-dependent apoptosis of CBMC and HMC-1. IgE-dependent activation of CBMC increased their susceptibility to TRAIL-mediated apoptosis. Results suggest that TRAIL-mediated apoptosis may be a mechanism of regulating MC survival in vivo and, potentially, for down-regulating MC hyperplasia in pathologic conditions.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Mastócitos/citologia , Mastócitos/metabolismo , Glicoproteínas de Membrana/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Reguladoras de Apoptose/genética , Caspase 3 , Caspases/metabolismo , Células Cultivadas , Humanos , Imunoglobulina E/imunologia , Mastócitos/imunologia , Glicoproteínas de Membrana/genética , RNA Mensageiro/genética , Ligante Indutor de Apoptose Relacionado a TNF , Fator de Necrose Tumoral alfa/genética , Regulação para Cima/genética , Receptor fas/metabolismo
20.
J Allergy Clin Immunol ; 116(6): 1357-63, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16337471

RESUMO

BACKGROUND: Mouse monoclonal IgE antibodies can promote the survival of mouse bone marrow-derived cultured mast cells and induce the cells to secrete mediators in the absence of known specific antigen. OBJECTIVE: To determine whether human IgE, in the absence of known specific antigen, had effects on the mediator secretion or survival of human mast cells. METHODS: We tested whether human IgE induced human cord blood-derived mast cells to secrete mediators or enhanced their survival on withdrawal of stem cell factor. RESULTS: Exposure to IgE, but not IgG, at concentrations as low as 2.5 microg/mL significantly enhanced the release of IL-8 and monocyte chemoattractant protein 1, but not histamine or cysteinyl leukotrienes. However, under the conditions tested, chemokine production in response to IgE alone was significantly less than that induced when aliquots of the same IgE-sensitized populations of human mast cells were stimulated with anti-IgE. The production of IL-8 and monocyte chemoattractant protein 1 in response to either IgE alone or IgE and anti-IgE was enhanced by preincubation of the cells in IL-4 and was inhibited by preincubation of the cells with dexamethasone. By contrast, we did not detect any ability of IgE to enhance mast cell survival on withdrawal of stem cell factor. CONCLUSION: Exposure to human IgE in vitro in the absence of known specific antigen can enhance chemokine production by human mast cells, and this secretory response can be enhanced by preincubation of the mast cells with IL-4 and can be suppressed by dexamethasone.


Assuntos
Quimiocinas/biossíntese , Dexametasona/farmacologia , Imunoglobulina E/farmacologia , Interleucina-4/farmacologia , Mastócitos/metabolismo , Degranulação Celular , Sobrevivência Celular , Humanos , Leucotrienos/biossíntese , Fator de Células-Tronco/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA